
Automatisierungstechnik für
Mechatroniker (8610718)

Copyright 2023, Prof. Jörg Wollert (FH Aachen)

2023, Prof. Jörg Wollert (FH Aachen)

Jul 14, 2023





LAB SESSIONS 12:

1 Pneumatics & Logic using Fluid Sim 1

2 PLC Control of the Festo Stations 21

3 Siemens PLC Control of Conveyor Band 53

4 Siemens NX MCD: Simple Robotic Arm Modelling 59

5 OPC UA: Simple Robotic Arm Modelling 63

6 Introduction to Pneumatics 69

7 Festo FluidSIM 77

8 PLC-Basics 81

9 Overview on hands-on videos for e!Cockpit 97

10 Siemens NX MCD 101

11 TIA Portal Basics 119

12 TIA OPC-UA 131

13 PLCSIM Advanced 135

14 Konzeption einer Fertigungsanlage für Sandwiches 139

15 Basics of automation technology 147

16 Basics of pneumatic elements 149

17 Pneumatics and the Digital Module 151

18 Relay Technology 155

19 PLC - General knowledge 157

20 PLC - Practical exercises 159

21 TIA Setup 161

22 UML Basics 173

i



23 OPC-UA client 183

ii



CHAPTER

ONE

PNEUMATICS & LOGIC USING FLUID SIM

These practical sessions deal with the creation of pneumatic circuits (lab session 1) and the usage of logic modules (lab
session 2) to control cylinders and motors.

Note: Please prepare all the preparation sections before the actual lab session. This is obligatory for attending
and will save you time during the session. Preparation may include drawing diagrams, answering questions, or reading
through the basics.

1.1 Learning Outcome

1.1.1 Introduction

This practical session deals with the planning and implementation of pneumatic and electric circuits using the software
FluidSim.

1.1.2 Requirements

• Introduction to Pneumatics

• Festo FluidSIM

1.1.3 What you need

Hardware

• MecLab programming stations

1



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Software

• Festo FluidSim (pre-installed on lab PC)

1.2 Preparation: Festo Programming Stations

The following sections are required to understand the station functionalities.

An overview of the stations is provided in this video: https://www.youtube.com/watch?v=Jav9SERe0sE

1.2.1 Conveyor belt

Todo: Assign the correct designation to the components and describe their task in the station.

Todo: Create a schematic sketch of the conveyor belt.

2 Chapter 1. Pneumatics & Logic using Fluid Sim

https://www.youtube.com/watch?v=Jav9SERe0sE


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.2.2 Stack magazine

Todo: Assign the correct designation to the components and describe their task in the station.

Todo: Create a schematic sketch of the stack magazine.

An important function of the stacking magazine station is the pressing of can and lid. A control system is to be designed
for this purpose. A vertically arranged pneumatic cylinder is to be used for pressing in, which is supplied with air by a
solenoid valve and controlled by the PC. The cylinder is to extend at the push of a button and remain extended as long
as the button remains pressed. An important boundary condition is that, for safety reasons, the cylinder also returns to
the upper end position in the event of a power failure.

Todo: Which type of cylinder would you use for the described pressing process (single or double acting cylinder) and
why?

Todo: Which one of the following valves would you use?

Todo: Design a pneumatic circuit diagram from the selected components and test the function in the simulation. Use
FluidSIM® for this purpose. Do not forget the compressed air source and a manual push button to start the cylinder.
Test the circuit in simulation mode by clicking on the manual override of the valve with the mouse.

1.2. Preparation: Festo Programming Stations 3



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

4 Chapter 1. Pneumatics & Logic using Fluid Sim



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.2. Preparation: Festo Programming Stations 5



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.2.3 Handling station

Todo: Assign the correct designation to the components and describe their task in the station.

Todo: Create a schematic sketch of the handling station.

Todo: Design a pneumatic circuit diagram from the selected components and test the function in the simulation. Use
FluidSIM® for this purpose. Do not forget the compressed air source and a manual push button to start the cylinder.
Test the circuit in simulation mode by clicking on the manual override of the valve with the mouse.

6 Chapter 1. Pneumatics & Logic using Fluid Sim



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.2. Preparation: Festo Programming Stations 7



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.3 Preparation: Basic Electronic Parts

The following section contain an introduction to the basic electronic parts used during the practical sessions. Please
carefully execute the todos as this knowledge is required for the practical session.

Todo: Assign the correct symbols and descriptions to the following components.

The DC motor is one of the most important drives of all. It is used in many consumer electronics devices, household
appliances, toys and industrial machines. In this task, a control for this type of motor is to be developed.

Todo: Find out how the DC motor and the solenoid work and answer the following questions:

a) What must be done to change the direction of the motor?

b) Can the direction of the solenoid be changed?

Program logic can be created by using relays in different designs.

8 Chapter 1. Pneumatics & Logic using Fluid Sim



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Todo: Sketch the symbols for pushbuttons (Taster), switches (Schalter), make contacts (Schließer), break contacts
(Öffner), and changeover contacts (Wechsler). What are these components used for?

Todo: Create a circuit in FluidSIM® with which the DC motor can be switched on and off manually and the running
direction can be changed.

Todo: Extend the previously created circuit so that the DC motor is indirectly switched on and off and reversed via
relays.

Solenoids provide an electric alternative to pneumatic cyclinders. They can operate fast and are controlled easily.

Todo: Create a control of a solenoid coil with a pushbutton and a relay in FluidSIM®. To do this, complete the circuit
diagram shown below. (The solenoid is represented by the pneumatic circuit.)

For safety reasons, a two-hand control is often used. In this case, a machine may only start when two buttons are
pressed. This is to prevent the machine operator from reaching into the machine with one hand while it is operating.

Todo: Create a circuit for two-hand control of a single-acting cylinder. Test the circuit in the simulation mode of
FluidSIM®. Could this function also be implemented with switches?

Todo: Check your options in FluidSim to create time-based actions (e.g., wait for 10s till returning the cylinder again).

1.4 Preparation: Basic Pneumatic Elements

The following sections contain an introduction to pneumatic elements and their usages. Please carefully execute the
todos as this knowledge is required for the practical session.

Todo: Match the images, sketches, and descriptions accordingly.

Todo: Create a basic sketches with an air source, a single acting cylinder, and one valve. The valve should control the
cylinder.

Todo: What do you have to change if you want to use a double-acting cylinder?

1.4. Preparation: Basic Pneumatic Elements 9



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

10 Chapter 1. Pneumatics & Logic using Fluid Sim



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.4. Preparation: Basic Pneumatic Elements 11



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.5 Task: Relais-based control

Use FluidSim to solve the following tasks. Please solve one task during the practical session.

1.5.1 Conveyor belt

Workpieces are transported in every automated assembly. In the MecLab, a conveyor belt is provided for this purpose.
The conveyor belt should not run continuously in order to save energy. Therefore, the conveyor belt should always
switch on when a workpiece is placed at the start of the belt and stop when the transport task has been completed. The
workpieces can be of any color. Use the sketch from the preparation as a guide.

Todo: Create a circuit in FluidSIM® in which the optical and inductive sensors activate a lamp when they switch.
Simulate different switching states. Test different objects (e.g., plastics, metal, coins, hand, paper) and write down the
sensors’ behaviours.

Todo: How can it be achieved that the belt runs only when a workpiece is in contact?

Todo: Implement the belt functionality in FluidSim using a simulated motor.

Conveying and sorting tasks are important functions in any production. The task is to design a conveyor belt and an
associated control program that has the following characteristics: Workpieces (black cans) are to be transported from
the beginning of the belt to the end of the belt. The transport should start when a workpiece is placed at the beginning
of the belt and stop after the workpiece has left the belt at the other end. Silver workpieces are to be sorted out onto the
chute.

Todo: Expand the simulation of the conveyor belt which fulfills the described functionalities. Add an ON/OFF switch
for the whole system.

Now, the system works in simulation mode. Thus, the next step is to test everything in real life.

Todo: Check the pin assignment at the distributor (“Multipolverteiler”).

Todo: Control the real conveyor belt via FluidSim.

12 Chapter 1. Pneumatics & Logic using Fluid Sim



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.5.2 Stack magazine

An important function of the stacking magazine station is the pressing of can and lid. A control system is to be designed
for this purpose.

A vertically arranged pneumatic cylinder is used for pressing in.

In the first step, the cylinder should extend when a button is pressed and should remain extended as long as the button
remains pressed. An important boundary condition is that, for safety reasons, the cylinder also returns to the upper end
position in the event of a power failure.

Todo: Create a simulation of the single-acting cylinder which operates the pressing activity when a virtual button is
pressed.

The function of the stacking magazine is to store workpieces and eject them individually. The parts are pushed out by
a double-acting pneumatic cylinder. A control system should now be developed for this.

Todo: Create a simulation of the double-acting cylinder which ejects the parts. Use one valve and two flow control
valves in addition to the cylinder. The flow control valves should be used to adjust the operation speed. After pressing
a pushbutton (in the software), the double-acting cylinder extends and moves the workpiece to the stacking position.
After pressing another button, the cylinder retracts again.

Sensors are important components of any automated system. In the stacking magazine station, there is a magnetic limit
switch which detects the position of the cylinder piston.

A control system for the stacking magazine is to be developed with the following features:

• The operator places a can in the assembly fixture and presses the start button.

• The double-acting cylinder pushes a lid out of the magazine tower (onto the can) and then moves back to the
starting position.

• The single-acting cylinder presses the lid into the can for exactly 10 seconds.

• The operator removes the finished workpiece (lid plus can).

• The can and lid may be of any color.

Todo: How can you ensure that the single-acting cylinder does not extend until the double-acting cylinder is fully
extended? Which component is required?

Todo: Create a new circuit to simulate the whole functionality of the stack magazine. Add an ON/OFF switch for the
whole system.

Todo: Check the pin assignment at the distributor (“Multipolverteiler”).

Todo: Control the real stack magazine belt via FluidSim.

1.5. Task: Relais-based control 13



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.6 Preparation: Logic Elements

The following section contain an introduction to the logic elements to create logic circuits. Please carefully execute the
todos as this knowledge is required for the practical session.

1.6.1 Logic circuits

In FluidSIM®, logic modules can be used to control interactions, e.g. by relais. The digital module can be found in
FluidSIM® in the components under the Digital Technology category. Place it in a new circuit; double-click on the
placed digital module to open a window in which you can edit the functions of the digital module.

Todo: Transfer the following logic circuits into FluidSIM® and examine the behavior of the circuits by starting the
simulation and setting the input channels I1 to I3 to the HIGH state by clicking on them.

Additionally, fill in the truth table for the inputs and the output Q1.

1.6.2 Flip-Flops

Holding elements - or flip-flops - are storing elements. The RS flip-flop is the simplest flip-flop. It has a set input and
a reset input.

Flags: Often the results of logic operations depend on previous results. These results must be stored temporarily so
that they can be used in the next cycle. Flags are used for this purpose.

14 Chapter 1. Pneumatics & Logic using Fluid Sim



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Todo: Create the logic circuit shown below in FluidSIM®, test the behavior, and describe it. For which control task
can the holding element (flip-flop) be used?

Todo: Plot the Q1 signal waveform on the timing diagram below.

Warning: Attention with FluidSIM: If both S and R are High, no dominance is set. If both inputs are active,
the state of the function block is undefined!

Warning: Depending on literature and PLC manufacturer, the RS and SR function blocks are partly defined
differently. Attention: Only from the designation RS or SR one cannot find out whether the setting or the resetting
is dominant!

Therefore we use the following notation for the lecture: The dominance is indicated by a “1” at the end of
the input name.

1.6. Preparation: Logic Elements 15



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

To couple an output signal back to an input, a memory element - a flag - is required. A flag stores the current value and
passes it to the output in the next cycle.

Todo: Test the following circuit and create the timing diagram.

16 Chapter 1. Pneumatics & Logic using Fluid Sim



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

1.6.3 Bringing all together

Todo: Create the circuit shown below in FluidSIM®:

Todo: Open the logic module and create a program with the following properties:

The lamp P1 should light up when the buttons S1 and S2 have been pressed simultaneously; thus, light up after push-
buttons S1 and S2 have been released again.

The lamp should go out when pushbuttons S3 or S4 have been pressed.

Hint: A button can be pressed permanently by holding down the shift key while clicking.

Todo: Extend the circuit so that an electric motor is switched on and off in addition to the lamp. (Parallel connection!)

1.7 Task: Logic-based control

Use FluidSim to solve the following tasks. Please solve one task during the practical session. Select the station which
you have not worked on before.

1.7.1 Conveyor belt

Workpieces are transported in every automated assembly. In the MecLab, a conveyor belt is provided for this purpose.
The conveyor belt should not run continuously in order to save energy. Therefore, the conveyor belt should always
switch on when a workpiece is placed at the start of the belt and stop when the transport task has been completed. The
workpieces can be of any color.

Todo: How can it be achieved that the belt only runs when a workpiece is in contact?

1.7. Task: Logic-based control 17



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Todo: Which logic component can be used to ensure that the motor runs as long as the workpiece is transported to
the end of the conveyor?

Todo: Implement the belt functionality in FluidSim using a simulated motor and logic elements in the digital module.

Conveying and sorting tasks are important functions in any production. The task is to design a conveyor belt and an
associated control program that has the following characteristics: Workpieces (black cans) are to be transported from
the beginning of the belt to the end of the belt. The transport should start when a workpiece is placed at the beginning
of the belt and stop after the workpiece has left the belt at the other end. Silver workpieces are to be sorted out onto the
chute.

Todo: Expand the simulation of the conveyor belt which fulfills the described functionalities. Add an ON/OFF switch
or the whole system. The functionality should be implemented using logic elements in the digital module.

Now, the system works in simulation mode. Thus, the next step is to test everything in real life.

Todo: Check the pin assignment at the distributor (“Multipolverteiler”).

Todo: Control the real conveyor belt via FluidSim.

Todo: What happens if you first place a silver can and shortly afterwards another silver can (distance approx. 3 cm)
on the conveyor belt? Is it sorted out correctly?

If not, extend or change the logic diagram in the digital module to achieve more precise sorting. Also test other
combinations.

1.7.2 Stack magazine

An important function of the stacking magazine station is the pressing of can and lid. A control system is to be designed
for this purpose.

A vertically arranged pneumatic cylinder is to be used for pressing in, which is supplied with air by a solenoid valve
and controlled by the PC. The cylinder is to extend at the push of a button and remain extended as long as the button
remains pressed. An important boundary condition is that, for safety reasons, the cylinder also returns to the upper end
position in the event of a power failure.

Todo: Create a simulation of both cylinders in which the magnetic valves are controlled by buttons. The single-acting
cylinder should be operated by one button, the double-acting cyclinder by two buttons. Use flow control valves to adjust
the operation speed.

Sensors are important components of any automated system. In the stacking magazine station, there is a magnetic limit
switch which detects the position of the cylinder piston.

A control system for the stacking magazine is to be developed with the following features:

• The operator places a can in the assembly fixture and presses the start button.

18 Chapter 1. Pneumatics & Logic using Fluid Sim



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

• The double-acting cylinder pushes a lid out of the magazine tower (onto the can) and then moves back to the
starting position.

• The single-acting cylinder presses the lid into the can for exactly 10 seconds.

• The operator removes the finished workpiece (lid plus can).

• The can and lid may be of any color.

Todo: Modify the circuit from the previous task so that the solenoid valves are controlled by the digital module instead
of by pushbuttons. Add a start button and the magnetic limit switch of the double-acting cylinder and connect them to
the inputs of the digital module.

Todo: Create the circuit for the plant in the digital module using logic elements. Test the control in the simulation.
Add an ON/OFF switch for the whole system.

Todo: Check the pin assignment at the distributor (“Multipolverteiler”).

Todo: Control the real stack magazine belt via FluidSim.

Todo: What happens,

a) if you press the start button again during the pressing process?

b) if you press the start button permanently?

Could this cause problems with the operation of the station? If so, extend your logic diagram to avoid this. Test again
with the help of the simulation.

1.8 Problem Solving

Will be expanded if required.

1.8. Problem Solving 19



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

20 Chapter 1. Pneumatics & Logic using Fluid Sim



CHAPTER

TWO

PLC CONTROL OF THE FESTO STATIONS

In these practical sessions you will write PLC programs to control one of the Festo stations. Both the conveyor belt
session and the handling station session are mandatory. The order in which you carry out the sessions is not important.

Note: Please prepare all the preparation sections before the actual lab session. This is obligatory for attending
and will save you time during the session. Preparation may include drawing diagrams, answering questions, or reading
through the basics.

2.1 Learning Outcome

2.1.1 Introduction

The inputs and outputs of the Festo stations can be processed and set using a PLC (Programmable Logic Controller).
In this module you will:

• create a state machine diagram for the station.

• apply your knowledge of the IEC 61131-3 programming language ST to implement the created state machine

2.1.2 What you need

Software

• e!Cockpit version 1.10.0.1 (pre-installed on lab PC)

Hardware

• Either the conveyor belt or the handling station.

21



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.2 Preparation: Conveyor Belt

2.2.1 Goal

• To get to know and describe the structure and functionality of the conveyor belt

The conveyor should be turned on once a piece is detected by the ligh beam sensor (left side). If the piece is metal,
it should be send back to the beginning of the conveyor and the station should wait until the piece is manually taken
away. If the piece is not metal, the stopper should be actuated and the piece should be redirected onto the slide.

Todo: Create a state machine diagram of the conveyor belt. Specify what should be done in the entry, do, and exit
phases of each state. Define the transition conditions between each state and the following state.

22 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.3 Assignment: Conveyor Belt

Todo: Scan for and connect to the PLC from inside e!Cockpit. This is how to do it:

Take a look at the PLC rack and read the PLC’s IP address. Then navigate to Network - Settings and put in the right
IP range to scan. For example, scanning in the range from 192.168.1.1 till 192.168.1.254 will detect all PLC’s in this
network that have IP addresses within that range. Please note that this scanning process can take multiple trials to detect
the PLC. If a PLC is not detected immediately, scan again.

After detecting the PLC, click Apply All to add the PLC to your project

Hint: The IP address of the PLC used in this session is 192.168.0.1

Note that now the PLC has been added to your project.

This has only added the PLC module itself. But the PLC has other modules attached to it that were not yet scanned
for. Every module adds new functionality to the PLC. For example, module 750-430 is an 8-channel digital input card.
Meaning that the wire-plugs on the 750-430 accept digital sensors like an inductive sensor, light beam sensor, etc.

2.3. Assignment: Conveyor Belt 23



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

24 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.3. Assignment: Conveyor Belt 25



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

If you are wondering what a certian module does, search its module number online.

Fig. 2.1: The PLC in this session has 5 modules inserted between the PLC and the End Module. Note that the End
Module has to always be there at the end.

Todo: Right click on the newly added PLC and choose scan to scan for the modules inserted next to the PLC.

The scan results should identify 5 modules. Click add all to add all modules to the project

After adding all scanned modules, your device structure should look like this:

2.3.1 Signal Mapping

The PLC is wired to the conveyor belt’s components as follows:

Table 2.1: Connections to the PLC
Component Input address Output address
Light beam sensor %IX1.0
Inductive sensor %IX1.1
Motor on %QX0.0
Stopper %QX0.1
Motor direction change %QX0.2

26 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.3. Assignment: Conveyor Belt 27



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Todo: Navigate to Device Structure and give these inputs/outputs suitable names to be used in the program.

2.3.2 State Machine as Enumeration

State machines can be implemented as enumerations in ST. An enumeration is a user defined type that holds a specific
number of elements. In the case of state machines, each enumeration element represents a state.

To create an enumeration in e!Cockpit, navigate to Program Structure in the bottom left corner, right click on
Applicaition and select DUT.

Todo: Create an enumeration and give it the name STATES.

Todo: Add one state element for each state you have in your state machine. Separate each state by a comma and name
each state according to your state machine diagram

28 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.3. Assignment: Conveyor Belt 29



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 2.2: Example of an enumeration with unspecific state names. Note: you have to give states meaningful names
(e.g., MOTOR_FORWARD, MOTOR_BACKWARD, etc.) not call the states STATE_1, STATE_2, etc.

2.3.3 PLC_PRG and the Switch Case Statement

Todo: Create an instance of the STATES enumeration in you program (call it state) and an Entry boolean variable.
Initialize your state variable with the INIT state.

Note: Every state machine should include the INIT state. This is the first state the program should run when powered.
If you didn’t include an INIT state in your preparation, include one now.

PROGRAM PLC_PRG
VAR

state : STATES := STATES.INIT;
Entry : BOOL := TRUE;

END_VAR

Todo: In the program code window, write a switch-case statement to switch between your states. Use the Entry
variable to implement the entry code.

CASE state OF
STATES.INIT:

IF Entry THEN
Entry := FALSE;
// insert "entry" code here. This code will be carried out only␣

→˓once upon entry to the state.

END_IF
// insert "do" code here. This code will be carried out every PLC cycle␣

→˓while the program is in this state.
(continues on next page)

30 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

(continued from previous page)

//exit
IF [exit_condition_here] THEN

Entry := TRUE;
state := STATES.[next_state_here];
// insert "exit" code here. This code will run only once upon␣

→˓exiting this state.

END_IF;
STATES.NEXT_STATE: // repeat the pattern above for every state.
.
.
.
.
.

END_CASE

Hint: To use a timer, create a timer variable in PLC_PRG and call it anything, for example, timer. This variable is of
data type TON. Give it no default value.

Your timer declaration may look like this:

When attempting to use the timer in the main program, you may see the following TON documentation.

This timer function block (of type TON) accepts 2 inputs, namely IN and PT, and gives us 2 optional outputs, namely

2.3. Assignment: Conveyor Belt 31



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Q and ET.

Hint:

• IN sets the timer

• PT gives the time value that the timer should count

• Q is set to TRUE when the timer finishes counting

• ET gives the elapsed time since IN was set to TRUE

To check if the timer has counted untill the end, check if timer.Q is TRUE. Do not forget to reset IN after the counter
has finished counting, otherwise the counter wont be usable again.

Todo: After writing the program, connect the PLC to the station using the 15-pin plug attached to the PLC rack,
upload the program to the PLC and test if it works as intented.

32 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.3.4 Visualization in e!Cockpit

In this section, a visualization of the program will be created. Visualization help show what is going on in the real
machine at a glance.

Todo: Right click on Applicaition and choose Visualization to add a visualization to your program.

Todo: Check Active on both available symbol libraries and click Add.

2.3. Assignment: Conveyor Belt 33



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Changing colors

Todo: In the visualization window, drag and drop some basic shapes from the Visualization Toolbox on the
left. Try to draw a simple conveyor belt shape using the basic shapes. E.g., use lines for the belt and a circle for the
workpiece, etc.

Variables can be assigned to shapes from within the Properties tab on the bottom left. E.g., variables can toggle a
color change of shapes or move the shapes along an axis in the visualization.

Todo: Drag and drop a simple rectangle. Assign the OPT sensor’s variable as the color variable. In Colors, make
the rectangle turn green when in alarm state. This makes the rectangle in the visualization turn green when the sensor
is triggered. Upload your new program and check if it works.

Showing current state

Todo: From the Common Controls tab, drag and drop a Text Field.

Text fields can show dynamic variables that change during runtime. This is done by using placeholders.

Todo: In your main program, create a new STRING type variable to store the current state’s name in. In every state’s
do code, assign the current state’s name to that variable. In the visualization, show that variable by typing Current

34 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

State : %s into a text field. In that text field’s properties tab, link your newly created STRING variable as the Text
variable. Run the program and see if the current state is showed in the visualization.

Note: The placeholder %s is used to hold a string type variable. A list of placeholders can be found here.

Moving an object

An object’s position in the visualization can be coupled on an INT type variable from the program. This is done in
Properties under Absolute movement, Movement, and either X or Y for the corresponding axis.

Todo: Create a moving circle (represents the workpiece) that moves when the real band moves. Use a new INT type
variable as your Absolute movement in X direction variable and a new TON type variable to increment it. Adjust
the incrementation size and delay for a better visualization.

Final task

Todo: Put everything together to build a visualization of the conveyor belt. Show the current state as well as whether
sensors are triggered or not (over color change). Moving parts should also move in the visualization. A color change
is sufficient to show if the stopper solenoid is actuated or not.

Note: You can use parameters to show/hide objects in the visualization.

2.4 Preparation: Handling Station

2.4.1 Goal

• To get to know and describe the structure and functionality of the handling station

The station should mount a top part (which is on the right side) on top of a bottom part (which is on the left side). The
station uses 2 different double acting cylinders and a pneumatic gripper. The functionality of the station can be seen in
this video: https://www.youtube.com/watch?v=Jav9SERe0sE

Todo: Create a state machine diagram of the handling station. Specify what should be done in the entry, do, and
exit phases of each state. Define the transition conditions between each state and the next state.

2.4. Preparation: Handling Station 35

https://help.codesys.com/webapp/_visu_placeholder_with_formatting_sequence_in_a_string;product=core_visualization;version=3.5.14.0
https://www.youtube.com/watch?v=Jav9SERe0sE


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

36 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.4. Preparation: Handling Station 37



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.5 Assignment: Handling Station

Todo: Scan for and connect to the PLC from inside e!Cockpit. This is how to do it:

Take a look at the PLC rack and read the PLC’s IP address. Then navigate to Network - Settings and put in the right
IP range to scan. For example, scanning in the range from 192.168.1.1 till 192.168.1.254 will detect all PLC’s in this
network that have IP addresses within that range. Please note that this scanning process can take multiple trials to detect
the PLC. If a PLC is not detected immediately, scan again.

After detecting the PLC, click Apply All to add the PLC to your project

Hint: The IP address of the PLC used in this session is 192.168.0.1

Note that now the PLC has been added to your project.

This has only added the PLC module itself. But the PLC has other modules attached to it that were not yet scanned
for. Every module adds new functionality to the PLC. For example, module 750-430 is an 8-channel digital input card.
Meaning that the wire-plugs on the 750-430 accept digital sensors like an inductive sensor, light beam sensor, etc.

38 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.5. Assignment: Handling Station 39



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

40 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

If you are wondering what a certian module does, search its module number online.

Fig. 2.3: The PLC in this session has 5 modules inserted between the PLC and the End Module. Note that the End
Module has to always be there at the end.

Todo: Right click on the newly added PLC and choose scan to scan for the modules inserted next to the PLC.

The scan results should identify 5 modules. Click add all to add all modules to the project

After adding all scanned modules, your device structure should look like this:

2.5. Assignment: Handling Station 41



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

42 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.5.1 Signal Mapping

The PLC is wired to the conveyor belt’s components as follows:

Table 2.2: Connections to the PLC
Component Input address Output address
1S1 %IX1.0
1S2 %IX1.1
2S1 %IX1.2
2S2 %IX1.3
1M1 %QX0.0
1M2 %QX0.1
2M1 %QX0.2
2M2 %QX0.3
3M1 %QX0.4

Todo: Navigate to Device Structure and give these inputs/outputs suitable names to be used in the program.

2.5. Assignment: Handling Station 43



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.5.2 State Machine as Enumeration

State machines can be implemented as enumerations in ST. An enumeration is a user defined type that holds a specific
number of elements. In the case of state machines, each enumeration element represents a state.

To create an enumeration in e!Cockpit, navigate to Program Structure in the bottom left corner, right click on
Applicaition and select DUT.

Todo: Create an enumeration and give it the name STATES.

Todo: Add one state element for each state you have in your state machine. Separate each state by a comma and name
each state according to your state machine diagram

2.5.3 PLC_PRG and the Switch Case Statement

Todo: Create an instance of the STATES enumeration in you program (call it state) and an Entry boolean variable.
Initialize your state variable with the INIT state.

Note: Every state machine should include the INIT state. This is the first state the program should run when powered.
If you didn’t include an INIT state in your preparation, include one now.

44 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 2.4: Example of an enumeration with unspecific state names. Note: you have to give states meaningful names
(e.g., MOTOR_FORWARD, MOTOR_BACKWARD, etc.) not call the states STATE_1, STATE_2, etc.

2.5. Assignment: Handling Station 45



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

PROGRAM PLC_PRG
VAR

state : STATES := STATES.INIT;
Entry : BOOL := TRUE;

END_VAR

Todo: In the program code window, write a switch-case statement to switch between your states. Use the Entry
variable to implement the entry code.

CASE state OF
STATES.INIT:

IF Entry THEN
Entry := FALSE;
// insert "entry" code here. This code will be carried out only␣

→˓once upon entry to the state.

END_IF
// insert "do" code here. This code will be carried out every PLC cycle␣

→˓while the program is in this state.

//exit
IF [exit_condition_here] THEN

Entry := TRUE;
state := STATES.[next_state_here];
// insert "exit" code here. This code will run only once upon␣

→˓exiting this state.

END_IF;
STATES.NEXT_STATE: // repeat the pattern above for every state.
.
.
.
.
.

END_CASE

Danger: With the double acting cylinders, do not set both outlets as TRUE at the same time.

Whenever you set an outlet as TRUE, be sure to follow it with the reverse on the opposite outlet.

// retracts cylinder 1
b1M1 := FALSE;
b1M2 := NOT b1M1; // this makes sure that not both outlets are actuated

// extends cylinder 2
b2M1 := TRUE;
b2M2 := NOT b2M1;

Hint: To use a timer, create a timer variable in PLC_PRG and call it anything, for example, timer. This variable is of

46 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

data type TON. Give it no default value.

Your timer declaration may look like this:

When attempting to use the timer in the main program, you may see the following TON documentation.

This timer function block (of type TON) accepts 2 inputs, namely IN and PT, and gives us 2 optional outputs, namely
Q and ET.

Hint:

• IN sets the timer

• PT gives the time value that the timer should count

• Q is set to TRUE when the timer finishes counting

• ET gives the elapsed time since IN was set to TRUE

To check if the timer has counted untill the end, check if timer.Q is TRUE. Do not forget to reset IN after the counter
has finished counting, otherwise the counter wont be usable again.

Todo: After writing the program, connect the PLC to the station using the 15-pin plug attached to the PLC rack,
upload the program to the PLC and test if it works as intented.

2.5. Assignment: Handling Station 47



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

48 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

2.5.4 Visualization in e!Cockpit

In this section, a visualization of the program will be created. Visualization help show what is going on in the real
machine at a glance.

Todo: Right click on Applicaition and choose Visualization to add a visualization to your program.

Todo: Check Active on both available symbol libraries and click Add.

2.5. Assignment: Handling Station 49



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Changing colors

Todo: In the visualization window, drag and drop some basic shapes from the Visualization Toolbox on the
left. Try to draw a simple conveyor belt shape using the basic shapes. E.g., use lines for the belt and a circle for the
workpiece, etc.

Variables can be assigned to shapes from within the Properties tab on the bottom left. E.g., variables can toggle a
color change of shapes or move the shapes along an axis in the visualization.

Todo: Drag and drop a simple rectangle. Assign the OPT sensor’s variable as the color variable. In Colors, make
the rectangle turn green when in alarm state. This makes the rectangle in the visualization turn green when the sensor
is triggered. Upload your new program and check if it works.

Showing current state

Todo: From the Common Controls tab, drag and drop a Text Field.

Text fields can show dynamic variables that change during runtime. This is done by using placeholders.

Todo: In your main program, create a new STRING type variable to store the current state’s name in. In every state’s
do code, assign the current state’s name to that variable. In the visualization, show that variable by typing Current

50 Chapter 2. PLC Control of the Festo Stations



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

State : %s into a text field. In that text field’s properties tab, link your newly created STRING variable as the Text
variable. Run the program and see if the current state is showed in the visualization.

Note: The placeholder %s is used to hold a string type variable. A list of placeholders can be found here.

Moving an object

An object’s position in the visualization can be coupled on an INT type variable from the program. This is done in
Properties under Absolute movement, Movement, and either X or Y for the corresponding axis.

Todo: Create a moving rectanle (represents the pneumatic cylinder) that moves when the real cylinder moves. Use a
new INT type variable as your Absolute movement in X direction variable and a new TON type variable to increment
it. Adjust the incrementation size and delay for a better visualization.

Final task

Todo: Put everything together to build a visualization of the handling station. Show the current state as well as whether
sensors are triggered or not (over color change). Moving parts should also move in the visualization. Use a button in
the visualization to start the entire process.

Note: You can use parameters to show/hide objects in the visualization.

2.5. Assignment: Handling Station 51

https://help.codesys.com/webapp/_visu_placeholder_with_formatting_sequence_in_a_string;product=core_visualization;version=3.5.14.0


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

52 Chapter 2. PLC Control of the Festo Stations



CHAPTER

THREE

SIEMENS PLC CONTROL OF CONVEYOR BAND

In this session, a Siemens PLC will be used along with a retroreflective sensor to determine the shape of a workpiece.

Note: Please prepare all the preparation sections before the actual lab session. This is obligatory for attending
and will save you time during the session. Preparation may include drawing diagrams, answering questions, or reading
through the basics.

3.1 Learning Outcome

3.1.1 Introduction

In this session you will program a Siemens PLC.

• You will get familiar with Siemens PLCs

• You will get familiar with the TIA Portal environment

3.1.2 Requirements

• PLC-Basics

• TIA Portal Basics

3.1.3 What you need

Software

All software on this list are pre-installed on the lab PC.

• TIA Portal V15 or newer

53



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

3.2 Conveyor System

The conveyor system consists of the following:

• Siemens S7 1200 PLC with a signal board installed

• DC motor (labeled M1)

• Two magnetic field sensors (labeled B1 and B2)

• A PCB board that (re) wires the I/O of the PLC

• A 20-pin connector to connect the PLC IO to additional sensors and actuators.

• Depending on the revision, the board provides four or five sensor inputs (X2, X3, X4, X5 and an optional X6)

• In addition there are one or two simulation switches (SIM DI) for the sensors X5 and X6. The simulation switches
simulate a sensor input, even though no sensor is connected to the sensor connector on the conveyor belt.

• The PLC has an analog input module, that is wired in a way to measure the PLC’s power consumption and input
voltage.

• A Quick-Chart (in german), showing the conveyor’s IO is available.

Todo: Make yourself familiar with the conveyor belt and identify each of the inputs

3.3 Preparation

3.3.1 Task Description

The conveyor band shown below is to be controlled by a Siemens PLC. Inductive sensors (1) are mounted on both sides
of the conveyor to detect if a workpiece carrier is there. A retroreflective sensor (2) is used to count how many pillars
the workpiece has. Different workpieces will be provided with different number of pillars.

The assignment is as follows: first, the conveyor should be waiting in an idle state. If the sensor at the beginning of
the conveyor (i.e., on the left side) detects a workpiece, the conveyor’s motor should be turned on and the workpiece
should be transported to the right side. While the workpiece passes the retroreflective sensor in the middle, the number
of pillars on the piece should be counted and saved in a variable of type integer.

54 Chapter 3. Siemens PLC Control of Conveyor Band



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 3.1: The conveyor band in question

Fig. 3.2: Workpieces with different pillar counts

3.3. Preparation 55



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

3.3.2 Preparation before the session

Todo: Draw a state machine diagram that describes the software to fulfill the above assignment.

Read through and prepare PLC-Basics and TIA Portal Basics before the lab session.

3.4 Task

Hint: Refere to TIA Portal Basics for help in creating function blocks and other topics.

3.4.1 Tia Portal Project Setup

Follow TIA Setup to create and set up a project in TIA Portal. Create the necessary variables for all sensors and map
them to their suitable addresses. The sensors and actors are wired to the following addresses.

Fig. 3.3: Signal address mapping

3.4.2 Function Block

Create a function block called FB_ConveyorControl and implement your state machine diagram from your prepara-
tion. Choose SCL as the programming language.

Hint: The Tia Portal environment does not support enumerations. Alternatively, you can use constants to represent
your state. An example of this is shown in the following figure.

Fig. 3.4: An example state machine. Here constants are defined inside the function block to represent the different
states.

56 Chapter 3. Siemens PLC Control of Conveyor Band



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

3.4.3 Main [OB1]

Todo:

• Add one instance of FB_ConveyorControl to your Main program (drag & drop).

• Connect the IO to the function-block.

• Test if the program runs correctly.

Hint: Main [OB1] is written in FBD, but the function block should be written in SCL.

3.4. Task 57



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

58 Chapter 3. Siemens PLC Control of Conveyor Band



CHAPTER

FOUR

SIEMENS NX MCD: SIMPLE ROBOTIC ARM MODELLING

In this lab session you will model a simple robotic arm mechanism using Siemens NX.

Note: Please prepare all the preparation sections before the actual lab session. This is obligatory for attending
and will save you time during the session. Preparation may include drawing diagrams, answering questions, or reading
through the basics.

4.1 What you need

4.1.1 Software

• Siemens NX version 1872 or newer (pre-installed on the lab PC)

4.1.2 Files

CAD files of the examples used in this module can be found here: https://fh-aachen.sciebo.de/s/AFAGrOi2zRFL1y7

For this task, the correct assembly can be found in simple_robotic_arm. Download all the parts from the
simple_robotic_arm file and open ASSEMBLY_simple_robotic_arm in Siemens NX.

4.2 Preparation

• Siemens NX MCD

4.3 Assignment

In this exercise a running simulation of a simple robotic arm mechanism will be created. The CAD files are available.
In Siemens NX MCD, different physical properties will be assigned to parts in order to reflect the function of the simple
station.

Note: When you first start NX, you may get an error saying there are no licenses available. Click “OK” and navigate
to File->Utilities->Select Bundles. In the window that opens, select and add both available bundles then click OK. This
solves the error.

59

https://fh-aachen.sciebo.de/s/AFAGrOi2zRFL1y7


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 4.1: Simple robotic arm functionality

4.3.1 Box and Conveyor Band

In the first steps, rigid and collision bodies will be assigned to parts the will interact with each other.

Todo:

• Assign a rigid body to the box and call it Box.

• Assign a collision body to the box and call it Box. Hint: to choose the entire box volume, right click on the box
and select Choose from list. Then select the entire box from the list.

• Assign collision body to the upper surface of the transporter band and call it Transport_band.

• Assign a transport surface to the upper surface of the transporter band and call it Transport_band. Specify the
correct direction vector and set the parallel velocity to 100 mm/s.

• Run the simulation and check if the box is transported on the transport band.

4.3.2 Simple Robotic Arm

Todo:

• Assign a rigid body to the robotic arm and call it Robot_arm.

• Assign a collision body to the robotic arm and call it Robot_arm.

• Assign a hinge joint to the robotic arm and call it “Robot_arm_HingeJoint”. Specify the direction vector and the
anchor point in a way that it rotates around the robotic joint.

• Assign a position control to the hinge joint object. Test different Destination and Speed settings.

• Finally set the destination to 0 and the speed to 500 °/s

60 Chapter 4. Siemens NX MCD: Simple Robotic Arm Modelling



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

4.3.3 Collision Sensor

Todo:

• Assign a collision sensor to the small cylinder on the transport band and give it a suitable name.

4.3.4 Conditions - Using Operations as if-Statements

Todo:

• Create an operation in the Sequence Editor. Choose the position control object as the Select Object choice.
Make a check next to position and give in a value of 70. Select the collision sensor object (from the ) as the
condition object and specify that triggered == true. Name the operation Arm_out.

• Create a second operation. Choose the position control object as the Select Object choice. Make a check
next to position and give in a value of 0. Select the collision sensor object (from the Physics Navigator)
as the condition object and specify that triggered == false. Name the operation Arm_in.

Run the simulation and check if it achieves the desired behavior.

4.3. Assignment 61



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

62 Chapter 4. Siemens NX MCD: Simple Robotic Arm Modelling



CHAPTER

FIVE

OPC UA: SIMPLE ROBOTIC ARM MODELLING

In this lab session you will connect a simulation in NX MCD to a simulated PLC.

Note: Please prepare all the preparation sections before the actual lab session. This is obligatory for attending
and will save you time during the session. Preparation may include drawing diagrams, answering questions, or reading
through the basics.

5.1 What you need

5.1.1 Software

• Siemens NX version 1872 or newer (pre-installed on the lab PC)

• PLCSIM Advanced V3

5.1.2 Files

CAD files of the examples used in this module can be found here: https://fh-aachen.sciebo.de/s/AFAGrOi2zRFL1y7

The correct assembly can be found in OPC_UA. Download all the parts from the OPC_UA file and open
ASSEMBLY_simple_robotic_arm_S_OPC_UA in Siemens NX.

For this task, you will find the PLC program that controls the arm in simple_robotic_arm_PLC_program_V15.1.
Download that folder as you will need to open it later with TIA Portal (change the file ending to .ap15_1 instead of
.info).

5.2 Preparation

• Siemens NX MCD

63

https://fh-aachen.sciebo.de/s/AFAGrOi2zRFL1y7


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

5.3 Assignment

In this exercise we will connect a running robotic arm simulation to a PLC over OPC-UA. The CAD files as well as the
PLC program are available.

Note: When you first start NX, you may get an error saying there are no licenses available. Click “OK” and navigate
to File->Utilities->Select Bundles. In the window that opens, select and add both available bundles then click OK. This
solves the error.

Fig. 5.1: Simple robotic arm functionality

5.3.1 Simple Robotic Arm

Start NX and open the ASSEMBLY_simple_robotic_arm file.

Todo:

• Create a signal and call it bSensor.

• Link the bSensor signal to a runtime parameter. Choose the collision sensor object as the runtime object.

• Create a signal and call it bRobotic_arm_out.

• Set the bRobotic_arm_out signal as Input of data type bool.

64 Chapter 5. OPC UA: Simple Robotic Arm Modelling



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

5.3.2 Conditions - Using Operations as if-Statements

The bRobotic_arm_out is a signal that is controlled by the PLC. Here we link that signal to the action of moving the
robotic arm in the simulation.

Todo:

• Create an operation in the Sequence Editor. Choose the position control object as the Select Object
choice. Make a check next to position and give in a value of 70. Select the bRobotic_arm_out signal (from
the Physics Navigator) as the condition object and specify that triggered == true. Name the operation
Arm_out.

• Create a second operation. Choose the position control object as the Select Object choice. Make a check next
to position and give in a value of 0. Select the bRobotic_arm_out signal (from the Physics Navigator)
as the condition object and specify that triggered == false. Name the operation Arm_in.

We will check if the desired behaviour is achieved after we set up the communication between the PLC and the arm
simulation.

5.3. Assignment 65



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

5.3.3 TIA Portal

Open the project downloaded from the Sciebo downloads folder. The project’s name is
simple_robotic_arm_PLC_program_V15.1. You can open it by double clicking on the project’s .ap15_1
file. This will start a TIA Portal instance. This PLC program is complete and only needs to be uploaded onto a PLC.
In the next step, we will simulate a PLC in order to upload our project onto it.

5.3.4 PLCSIM Advanced

Todo: Start PLCSIM Advanced and start a PLC simulation. Use PLCSIM Advanced for a step-by-step guide.

Note: Make sure the PLC simulated has the same name as the PLC in the TIA Portal program. In the downloaded
project, the name is PLC_1.

Note: Make sure PLCSIM Virtual Eth. Adapter is selected in PLCSIM Advanced.

Todo: In TIA Portal, compile your program and upload it to the simulated PLC.

66 Chapter 5. OPC UA: Simple Robotic Arm Modelling



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

5.4 Establishing OPC-UA Communication

Todo: Establish an OPC UA connection between MCD and the simulated PLC. Refer to OPC UA and Signal Mapping
for a guide on how to do that.

Todo: In the Signal Mapping window in MCD, click the option Do Auto Mapping. This will automatically map
identically-named signals to each other.

Todo: Run the simulation and watch the PLC’s variables in a watch table. The production station should now be
controlled through the simulated PLC.

5.4. Establishing OPC-UA Communication 67



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

68 Chapter 5. OPC UA: Simple Robotic Arm Modelling



CHAPTER

SIX

INTRODUCTION TO PNEUMATICS

6.1 Actuators

The single acting cyclinder has only one inlet. If a high pressure (i.e., pressurized air) is applied at the inlet, the cylinder
will extend, acting against the spring spring force inside the cylinder and releasing the air directly at the cylinder. If
a pressure lower than the atmospheric pressure is applied at the inlet, the cylinder will retract due to the spring force.
The single acting cylinder retracts automatically once no high pressure is applied at the inlet anymore.

Fig. 6.1: FluidSIM single acting cylinder symbol

The double acting cylinder on the other hand has two inlets. If a high pressure is applied at either one, the cylinder will
more (either extend or retract, depending on with inlet recieves the high pressure). Unlike the single acting cylinder,
the double acting cylinder will remain in its current position even after no high pressure is recieved through the inlet
anymore. This is due to the absense of a spring inside. To reverse the cylinder position, pressurized air must be applied
on the opposite inlet.

Note: A 5/2 valve is way more commonly used in the industry than a 4/2 valve

69



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 6.2: The working principle of a single acting cylinder with a 3/2 way valve

Fig. 6.3: FluidSIM double acting cylinder symbol

70 Chapter 6. Introduction to Pneumatics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 6.4: The working principle of a double acting cylinder with a 4/2 way valve.

6.1. Actuators 71



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

6.2 Directional Valves

The goal is to control the pressurized air direction to actuate the pneumatic cylinders. The most used valve is a 3/2 way
directional valve.

Note: In a 3/2 way directional valve, the ‘3’ stands for the number of connectors and the ‘2’ stands for the number
switching positions.

Port 1 has is to be connected with the air inlet (i.e., pressurized air source). Port 2 is considered the working port and is
to be connected to a valve (e.g., a single acting cylinder). Finally, port 3 is the exhaust port, which is usually connected
to an air outlet object in FluidSim.

Fig. 6.5: FluidSIM pneumatic circuit with a 3/2 way directional valve connected to a pressurized air source and a single
acting cylinder

For a double acting cylinder, a Directional Control Valve DCV (5/2 way valve) is needed. This valve has two outputs
and they are connected to the two inlets of the double acting cylinder. The valve has 3 inlets (1 inlet and 2 exhaust
outputs).

6.3 Throttle Valves

The speed is limited by the air pressure, the flowrate and the spring force (in case of a single acting cylinder). The
next goal is to control the speed of the pressurized air, and thus the actuation speed of the cylinders. To do that, we use
valves to limit the speed of the pressurized air.

A throttle valve limits the air flow in both directions.

A check valve completely blocks any air flow in one direction, while allowing air from with no resistance in the opposite
direction.

72 Chapter 6. Introduction to Pneumatics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 6.6: FluidSIM pneumatic circuit with a 5/2 way directional valve connected to a pressurized air source and a double
acting cylinder

6.3. Throttle Valves 73



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Note: This is comparable to the diode behavior in electronics, where current is allowed to flow in only one direction
and is blocked in the opposite direction.

Fig. 6.7: A check valve to control air flow to a single acting cylinder

A throttle check valve limits the air flow in only one direction. In the symbol, the air going from 1 to 2 is stopped by
the check valve (represented as a circle in the symbol), which blocks air flow completely along that path and thus air
has to go through the throttling path. In the other direction (from 2 to 1), the check valve allows the air to pass through
it with no resistance.

For a double acting cylinder, it is best practice to control the air flow on the outlet path. To control the speed in both
the extension and the retraction paths, a throttle check vavle is placed in both paths.

74 Chapter 6. Introduction to Pneumatics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 6.8: The working principle of a throttle check valve

6.3. Throttle Valves 75



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

76 Chapter 6. Introduction to Pneumatics



CHAPTER

SEVEN

FESTO FLUIDSIM

In this module, you’ll be using FluidSIM Pneumatik V4.5 Meclab. Further documentation is available online at https:
//www.festo-didactic.com/ov3/media/customers/1100/698522_fl_sim_p42_de_offset.pdf

7.1 Creating a new project

In order to create a new project, click on File New. Alternatively, you can click on the New icon on the top bar.

7.2 Building circuits

Components can be dragged and dropped from the components window on the left side into the workspace on the right
side. Pneumatic, electrical and logical circuits can be constructed this way.

7.3 Starting/Stopping the simulation

The start/stop buttons in the top bar can be used to start/stop the simulation. If there are no errors in the circuits, the
simulation should run and the start icon should turn green.

77

https://www.festo-didactic.com/ov3/media/customers/1100/698522_fl_sim_p42_de_offset.pdf
https://www.festo-didactic.com/ov3/media/customers/1100/698522_fl_sim_p42_de_offset.pdf


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 7.1: Creating a new project

78 Chapter 7. Festo FluidSIM



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 7.2: FluidSIM environment

7.3. Starting/Stopping the simulation 79



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 7.3: FluidSIM environment

80 Chapter 7. Festo FluidSIM



CHAPTER

EIGHT

PLC-BASICS

Programmable Logic Controllers (PLC) are computers which are commonly used in commercial and industrial control
applications. Generally speaking, PLCs monitor inputs and other variable values, make decisions based on a stored
program and control outputs to automate a process or machine.

A PLC typically consists of input and output modules, a Central Processing Unit (CPU) and a programming device.
The primary function of the input unit is to convert the signals at the inputs into logic signals which can be used by the
CPU. The CPU analyzes the status of inputs, outputs and other variables and executes the stored program. After that,
the CPU changes the output signals.

Fig. 8.1: Example for PLC wiring for industrial applications

Advantages in contrast to hard-wired control:

• Easy to modify input and output devices

• High flexibility due to modular design

• Significant reduction of cabling

• Solid-state, no moving parts

81



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

• Smaller physical size

• Integrated diagnostics and override functions

• Easy and cost-effective duplication possible

• Communication capabilities

8.1 Information processing

Information at the inputs of the PLC are processed in cycles. First, the CPU queries the input channels and stores the
data in the working memory. This storage area is called “input image” as the stored input data does not show the current
state of the inputs but the available data at the time of sampling.

Next, the program is executed step by step and the variables are stored in the memory. Finally, the calculated output
parameters are stored in the “output image” and transferred to the output channels to control the connected machine.

Fig. 8.2: Cyclic information processing of PLCs

Types of input and output signals:

• Binary inputs: Input module can distinguish between a high and a low level of the input signal (typical value:
0V and 24V).

• Binary outputs: Output modules generate TRUE (5V) or FALSE (0V) values which are typically intensified
(24V) using transistors or relays.

• Analog inputs: A physical measurand is transformed into a voltage or current signal using a transducer. The
resulting signal is transferred to the analog inputs of the PLC.

82 Chapter 8. PLC-Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

• Analog outputs: A voltage or current signal is generated to control actuators.

8.2 PLC Programming (IEC 61131)

PLC programming is standardized in the IEC 61131.

8.2.1 Controller configuration and resources

Creating a controller configuration, the hardware structure is specified in the programming environment. All resources
which are controlled by the PLC software (input, output modules, interface cards, etc.) are declared. Nowadays, this
is usually done automatically by scanning the connected components or by drag-and- dropping the parts.

Input channels are declared using %I and outputs specified writing %Q. The following letter defines the data type of the
signal (bit X, byte B, word W, doubleword D). In this context, the declaration %IX1.2 calls the second channel of the
first binary input card.

La-
belling
of in-
put and
output
ad-
dress-
ing

1.
Let-
ter

2. Letter
Exam-
ple

AT% I Input x Bit AT%IX1.2
Q Out-
put

B Byte, 8 Bit AT%QB0

W Word, 16 Bit AT%QW7
D Doubleword, 32 Bit AT%QD5

8.2.2 Tasks

Tasks organize the time schedule of programs. It works a bit like a cyclic step counter, which selects the instructions of
the program in a clock-controlled way. Based on that, the CPU processes the instruction which is stored in the selected
storage area.

Several programs can be assigned to one task running all in the same cycle time. The following process is conducted
(IPO principle; input-processing-output):

• Read input data of all programs.

• Processing of all programs.

• Output of the output data of all programs.

The cycle time of all programs assigned to one task is identical as the output data of all programs is transferred simul-
taneously at the end of the processing cycle.

One CPU can process multiple tasks with different cycle times (multitasking). Therefore, the computing power is
distributed between the different tasks using interrupt signals for changing.

8.2. PLC Programming (IEC 61131) 83



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

8.2.3 Program Organization Units (POUs)

An object of the type POU is a Program Organization Unit in a CODESYS project. You write source code for the
controller program in POUs. There are the following types of POUs:

• Programs

• Function Codes FC

• Function Blocks FB

Fig. 8.3: Difference between Function Codes and Function Blocks

Function Codes can have several input variables but only one output variable. This variable is the return value of the
Function Code. Function codes have no internal memory, thus they cannot store intermediate values. Function Codes
can be separated between standard and user-specific functions. Standard functions like for example AND, ADD or
BYTE_TO_WORD can be used directly during programming without declaring it separately.

Function Blocks can also be standardized or user-specific. Examples for pre-defined FBs are triggers, counters and
timers. FBs can store intermediate values for the next IPO cycle and can have several outputs Q. The output signals are
created by connecting the inputs I and the states Z.

8.2.4 Variables

Variables are used to establish a communication between different program organization units. Different kinds of
variables are available:

• VAR: Local variables which are only valid in the associated POU.

• VAR_GLOBAL: Global variables are valid in all POUs. They are used for communication between different pro-
grams.

• VAR_INPUT: Input variables which are used to write inputs in FCs or FBs.

• VAR_OUTPUT: Output variables of FCs or FBs.

• VAR_IN_OUT: Input and output variables can be changed in the FB and then be released.

• VAR_RETAIN: Variables retain the value when the PLC is put off and on again.

• VAR_PERSISTENT: Variables retain the value if the software is loaded on the PLC.

Standard data types:

84 Chapter 8. PLC-Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Datatype Size Range Example
Bit sequence BOOL 1 Bit FALSE / TRUE FALSE

BYTE 8 Bit 16#00 . . . 16#FF 16#00
WORD 16 Bit 16#0000 . . . 16#FFFF 16#0000
DWORD 32 Bit 16#00000000 . . . 16#FFFFFFFF 16#00000000

Whole numbers SINT 8 Bit -128 . . . 127 0
INT 16 Bit -32768 . . . 32767 0
DINT 32 Bit -2147483648 . . . 2147483647 0

Whole numbers without sign USINT 8 Bit 0 . . . 255 0
UINT 16 Bit 0 . . . 65535 0
UDINT 32 Bit 0 . . . 4294967295 0

Floating point figure REAL 32 Bit -3.4 * 10^38 . . . 3.4 * 10^38 0
Time TIME
Time of day TIME_OF_DAY
Date DATE
Character sequence STRING

A typical variable declaration consists of five parts:

<variable name> AT<address> :<data type> :=<initial value>; (* comment *)

example: buttonStart AT%IX0.0 :BOOL :=FALSE; (*Start Button*)

Note: It is helpful to use speaking names instead of numbers to make it easy to understand the program (e.g. button-
Light and buttonVentilator instead of button1 and button2).

Derived data types:

Standard data types can be modified to fulfil special needs: TYPE Name : ... END_TYPE

Four different kinds can be distinguished:

• Enumeration: TYPE A_STATUS : (START,RUN,WAIT,STOP); END_TYPE

• Area: TYPE A_DATA : UNIT(0..16#3FF); END_TYPE

• Field: TYPE A_4IN : ARRAY[1..4] OF A_DATA; END_TYPE

• Structure: TYPE str_Motor : STRUCT ... END_STRUCT; END_TYPE

Enumerations are typically used if different options are possible and if easy readable code should be produced.

8.3 Programming languages (IEC 61131)

Programmable Logic Controller (PLC) programming as other programming tasks has defined set of rules described
in the IEC 61131-3. In this Standard, information about programming concepts and industry accepted programming
languages is provided. For this module, SCL, LAD and FBD are selected as they are most commonly used.

8.3. Programming languages (IEC 61131) 85



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 8.4: Five programming languages of the IEC 61131-3 standard (source: https://www.motioncontroltips.com/
iec-61131-3-plcopen/)

Fig. 8.5: SCL, LAD & FBD (ref: Siemens S7-1200 Programmable controller System Manual)

86 Chapter 8. PLC-Basics

https://www.motioncontroltips.com/iec-61131-3-plcopen/
https://www.motioncontroltips.com/iec-61131-3-plcopen/


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

8.3.1 Structured Control Language (SCL)

SCL (Structured Control Language) is a high-level text-based programming language. It is based on PASCAL.

Fig. 8.6: An example of a SCL code 1.

Various important syntax for SCL are provided below:

Assignments: A := 10; (The variable A is assigned the value 10.)

Statements: blink : BOOL; (Create a variable blink and assign the type BOOL.)

Mathematical functions: +, -, *, /

Addressing of global variables (tags): “<tag name>” (Tag name or data block name enclosed in double quotes)

Addressing of local variables: #<variable name> (Variable name preceded by “#” symbol)

Comments
Single line comment: // comment

Multi line comment and comments after end of ST line: <statement>; (* comment *)

8.3. Programming languages (IEC 61131) 87



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 8.7: An example of a SCL code 2.

88 Chapter 8. PLC-Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Operators: Standard operators in ST ordered after precedence:

Operation Symbol Precedence
Parentheses (expr) Highest
Function Evaluation MAX(A,B)
Negation Complement NOT
Exponentiation **
Multiply *
Divide /
Modulo MOD
Add +
Subtract -
Comparison <,>,<=,>=
Equality / Inequality = / <>
Boolean AND & AND
Boolean Exclusive OR XOR
Boolean OR OR Lowest

Note: A = B and A := B are NOT SAME!

= (equality operator) evaluates if the left and the right side is equal. If value of A is equal to value B. It returns TRUE if
yes, else it returns FALSE.

:= denotes a statement. It is used for assigning value of right side to the left side. In this case, the value of B is assigned
to A.

Combining operators:

IF (Input1) AND (Input2) OR (Input3) THEN
Output1 := True;

END_IF

IF Statements: If statements are used for boolean queries.

IF [boolean expression] THEN
<statement>;

ELSIF [boolean expression] THEN
<statement>;

ELSE
<statement>;

ENDIF;

CASE Statements: Case statements are one of the most important structuring methods to generate readable code.
Case statements are typically used to program state machines.

TYPE
Steps:(INIT:=0, START, RUN, END);

END _TYPE

VAR
state: Steps; (*use of enumeration*)

END_VAR
(continues on next page)

8.3. Programming languages (IEC 61131) 89



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

(continued from previous page)

CASE state OF
INIT: Instruction_A;
START: Instruction_B;
RUN: Instruction_C;
END: Instruction_D;

END_CASE

FOR Loops: It is used to repeat code a specific number of times.

FOR count := initial_value TO final_value BY increment DO
<statement>;

END_FOR;

WHILE Loops: It is used to repeat the loop as long as some conditions are TRUE. A WHILE loop will repeat as long
as a boolean expression evaluates to TRUE.

WHILE [boolean_expression] DO
<statement>;

END_WHILE;

REPEAT Loops: It works the opposite way of the WHILE loop. This loop will stop repeating when a boolean
expression is TRUE.

REPEAT
<statement>;

UNTIL [boolean_expression]
END_REPEAT;

8.3.2 Ladder Diagram (LAD)

Ladder diagrams are specialized schematics commonly used to document industrial control logic systems.

In terms of TIA Portal program for Siemens PLCs, SCL plays an important role in programming of functions codes
and function blocks. The Main [OB1] block is preferred to be programmed using the Ladder Diagrams.

A program written in LAD consists of networks. The language is based on relay logic. The flow of the logic ‘true’
across a network is similar to the flow of electricity across a relay logic. One can think of the left rail as being positive,
and the right rail as being negative. The logic ‘true’ flows from the left rail to the right rail.

Fig. 8.8: An example of a network in LAD.

90 Chapter 8. PLC-Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Various logical operations can be thus programmed in LAD. The following figure shows AND & OR logic after starting
the PLC or simulated PLC.

Fig. 8.9: An example of logical operations in LAD.

A general list of Bit Logic instructions used in LAD are mentioned below

Operation Symbol
Normally Open Contact (Address) ---| |---
Normally Closed Contact (Address) ---| / |---
Save RLO into BR Memory ---(SAVE)
Bit Exclusive OR XOR
Output Coil ---( )
Midline Output ---( # )---
Invert Power Flow ---|NOT|---
Insert branch
Merge branch

8.3.3 Function Block Diagram (FBD)

FBD is another graphical programming language. It uses Boolean algebra-based blocks to develop codes. A function
block is depicted as a rectangular block. The inputs are on the left and outputs on the right side. It can have standard
functions, such as logic gates, mathematical operations, counters, or user defined functions.

8.3. Programming languages (IEC 61131) 91



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 8.10: An example of a network in LAD. (ref: SIEMENS TIA Portal STEP 7 Basic V10.5)

92 Chapter 8. PLC-Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 8.11: Common FBD blocks (ref: SIEMENS Function Block Diagram (FBD) Reference Manual)

8.3. Programming languages (IEC 61131) 93



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

8.3.4 Additional languages

The Instruction List (IL) is very similar to the programming language Assembler and typically used to limit the com-
puting time. In the example, the operand A is loaded in the working memory in the first line. Next, an AND operation
with the negated operand B is conducted. Finally, the result is stored in the variable C. However, IL gets very long
and confusing if complex tasks are programmed. As computing time usually does not play an important role today,
high-level languages like Pascal, C or Structured Text (ST) are used typically.

The Sequential Function Chart (SFC) can only be used to program sequential control tasks in the form of step chains.

8.3.5 Examples

SCL

A complete example (programming of a traffic light) is shown below. First, an enumeration including all process states
is defined. Next, all necessary variables are declared (a variable called state is defined using the new created data
type stateType). Finally, the program sequence is established using a CASE OF statement.

TYPE stateType :
(RED:=1,REDYELLOW,GREEN,YELLOW);

END_TYPE

VAR
state:stateType;
button:BOOL;
lred,lyellow,lgreen:BOOL;
atime:TON;

END_VAR

CASE state OF
stateType.RED:

IF NOT lred THEN
lred:=TRUE;

END_IF
IF button THEN

state:=stateType.REDYELLOW;
END_IF

stateType.REDYELLOW:
IF NOT lyellow THEN

lyellow:=TRUE;
atime(IN:=TRUE,PT:=#5s);

END_IF
IF atime.Q THEN

state:=stateType.GREEN;
END_IF

stateType.GREEN:
IF NOT lgreen THEN

lgreen:=TRUE;
atime(IN:=TRUE,PT:=#40s);

END_IF
IF atime.Q THEN

state:=stateType.YELLOW;
(continues on next page)

94 Chapter 8. PLC-Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

(continued from previous page)

END_IF
stateType.YELLOW:

IF NOT lyellow THEN
lyellow:=TRUE;
atime(IN:=TRUE,PT:=#5s);

END_IF
IF atime.Q THEN

state:=stateType.GREEN;
END_IF

END_CASE

8.4 Sources

• https://www.plcacademy.com/structured-text-tutorial/

• Book Speicherprogrammierbare Steuerungen für die Fabrik- und Prozessautomation, Matthias Seitz, 2012*

8.4. Sources 95

https://www.plcacademy.com/structured-text-tutorial/


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

96 Chapter 8. PLC-Basics



CHAPTER

NINE

OVERVIEW ON HANDS-ON VIDEOS FOR E!COCKPIT

The following videos provide an overview on how to use e!Cockpit programming environment.

For general information about PLCs and PLC programming languages, please refer to the general PLC learning module.

For all videos, a German as well as an English version is provided. Both videos contain the same content.

Warning: This page only contains an extraction of existing learning viedos for e!Cockpit. You can find the full
list of videos here:

https://youtube.com/playlist?list=PLfPCU8iUgXjoHI1_VpxFGmjBUgTbPJg_d (German)

and here:

https://youtube.com/playlist?list=PLfPCU8iUgXjoSaptfsNrxYoJtJCrznYvh (English)

9.1 Creating a connection to the PLC

9.1.1 Real PLC available

The following video shows you how to scan a network for existing PLCs.

https://youtu.be/5DtAisRMUJI

https://youtu.be/D6uInVqTLuQ

9.1.2 Usage of a virtual PLC

If you do not have a PLC, you can use the simulation functionalities of e!Cockpit. Therefore, create an empty project
and select a PLC from the product catalogue on the right bottom of the e!Cockpit. For instance, you can select a Wago
750-8206.

When using a virtual PLC, you can do the same programming and visualization steps as with a real PLC.

97

https://youtube.com/playlist?list=PLfPCU8iUgXjoHI1_VpxFGmjBUgTbPJg_d
https://youtube.com/playlist?list=PLfPCU8iUgXjoSaptfsNrxYoJtJCrznYvh
https://youtu.be/5DtAisRMUJI
https://youtu.be/D6uInVqTLuQ


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

9.2 Adding hardware modules

The following video shows you two options on how to add modules, such as digital inputs, to e!Cockpit. If you are using
a real PLC, you can use both options (manual adding as well as automatic recognition). If you are using a simulated
PLC, please use the manual adding option.

https://youtu.be/9a0fXNDTeoA

https://youtu.be/Iw5YHhHm9YM

9.3 Program Download and Boot Application

After programming, the program code must be uploaded to the PLC.

https://youtu.be/yV1l1FvjxI0

https://youtu.be/zihFQECdSbU

9.4 Variables

The following video shows how to declare and use variables in e!Cockpit.

9.4.1 Local variables

Local variables which are only valid in the associated program organization unit (POU).

https://youtu.be/fsm3wdhrvwQ

https://youtu.be/gAa9xLlN00Q

9.4.2 Global variables

Global variables are valid in all POUs. They are used for communication between different programs.

https://youtu.be/El1euulrWVw

https://youtu.be/Ac_8nN3LdVk

9.4.3 Retain and persistent variables

The following video shows how to keep the values of variables even if the controller is rebooted or a program is
downloaded again.

https://youtu.be/IXIY07RsuTE

https://youtu.be/ZbP8Um7S2c8

98 Chapter 9. Overview on hands-on videos for e!Cockpit

https://youtu.be/9a0fXNDTeoA
https://youtu.be/Iw5YHhHm9YM
https://youtu.be/yV1l1FvjxI0
https://youtu.be/zihFQECdSbU
https://youtu.be/fsm3wdhrvwQ
https://youtu.be/gAa9xLlN00Q
https://youtu.be/El1euulrWVw
https://youtu.be/Ac_8nN3LdVk
https://youtu.be/IXIY07RsuTE
https://youtu.be/ZbP8Um7S2c8


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

9.5 Programs, functions and function blocks

The following video shows the differences between programs, functions and function blocks as well as their usage in
e!Cockpit.

https://youtu.be/p0-t5P0_AeI

https://youtu.be/27-JI2aMs7Q

9.6 Own datatype structures

The following video shows how a datatype can be used to combine and structure variables.

https://youtu.be/TOwBdnSekEc

https://youtu.be/9EM4bdiYN5s

9.7 Visualization

e!Cockpit offer built-in visualization options.

https://youtu.be/RDDQy3d8zqc

https://youtu.be/PrsaxV5x6U8

9.5. Programs, functions and function blocks 99

https://youtu.be/p0-t5P0_AeI
https://youtu.be/27-JI2aMs7Q
https://youtu.be/TOwBdnSekEc
https://youtu.be/9EM4bdiYN5s
https://youtu.be/RDDQy3d8zqc
https://youtu.be/PrsaxV5x6U8


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

100 Chapter 9. Overview on hands-on videos for e!Cockpit



CHAPTER

TEN

SIEMENS NX MCD

In this module, Siemens NX MCD is introduced and the most common functions that are used in constructing kinematic
models are presented.

10.1 Learning Outcome

• You will get familiar with virtual commissioning.

• You will get to know the basics of Siemens NX MCD.

• You will understand and be able to create physics-based models.

10.2 Virtual Commissioning

Virtual commissioning is the process of testing and debugging control code on virtual models, possibly before the
machine/ components materialize. It allows for early validation of code and decreases real commissioning time.

Fig. 10.1: Influence of control software debugging on project time with (figure below) and without (figure above)
virtual commissioning

101



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.2: Typical steps of virtual commissioning

Virtual commissioning can start during the development stages of the product/ asset. At stages where the material
objects are not yet available, virtual commissioning allows for early detection of bugs in the PLC code and design flaws
in the asset.

10.3 Mechatronics Concept Designer

10.3.1 Siemens NX General Actions

NX is an advanced CAD/CAM/CAE software. The following are some common actions used when working with a
CAD assembly in NX.

Table 10.1: General NX Commands
Action How to do it
Zoom in/out Mouse wheel
Move the view left/right/up/down Click and hold both the mouse wheel + the right mouse

button and move the mouse
Rotate the view Click and hold the mouse wheel and move the mouse
Move/Rotate an object relative to other objects/global
coordinate system

Assemblies tab > Move Component > Select Compo-
nents > Specify Orientation with arrows

102 Chapter 10. Siemens NX MCD



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

10.3.2 Modelling with MCD

Mechatronics Concept Designer is an application inside Siemens NX that allows the creation of physics-based models
and simulations based on CAD files. The goal of the following sections is to guide you through the basics of creating a
physics-based model and influencing it from outside the simulation using external signals. To navigate to MCD, open a
part or an assembly in Siemens NX. In the Application tab, click on more and choose Mechatronics Concept Designer.

Rigid Bodies

Solids (i.e., CAD models with no assigned physical properties in MCD) are only there to visualize the assembly and do
not move during the simulation. Once a part gets assigned as a rigid body, it starts participating in the simulation. As a
rigid body, the part is changed from just a CAD model to a part with physical characteristics. Rigid bodies have weight,
center of mass and inertia. These parameters influence the dynamics of the body in the simulation. It is recommended
to assign a material to the solid body, so that a realistic weight can be calculated.

Rigid bodies react to the acceleration due to gravity, which can be defined along any axis in MCD. Usually, acceleration
due to gravity is defined in the negative z or y directions. The direction of gravitational acceleration can be changed in
File -> Preferences -> Mechatronics Concept Designer -> General -> Acceleration due to Gravity.

Collision Bodies

Rigid bodies without collision bodies do not collide when they come in contact. Collision is only possible when both
objects have collision bodies. Without collision bodies, objects will go right through each other. An object with a
collision body, however, will collide with another object that also has a collision body.

Collision is a property which is independent of whether the part is a rigid body or not i.e., a collision object that has
no assigned rigid body status will still collide with other objects that have a collision body.

The collision shape of a collision body can be defined in many ways. It is best to choose simple shapes (box, cylinder,
etc.) as a collision shape.

Collision mesh

10.3. Mechatronics Concept Designer 103



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.3: Assigning a rigid body to a part. One rigid body can consist of multiple parts connected to each other that
will always undergo the same motion together.

104 Chapter 10. Siemens NX MCD



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

The option “mesh” offers the highest complexity. It allows for a more realistic simulation of the real object, but requires
a high simulation performance. The Convex Factor sets the resolution of the mesh. The higher the factor, the more
detailed the collision mesh. Collision shapes that consist of more than 300 triangles will automatically set a Siemens
NX warning pointing to potential performance losses.

Fig. 10.4: Different ways to set a collision body; the pink area is the active collision area that will collide with other
collision objects.

A decision must be made whether an added complexity to the collision shape serves the purpose of the simulation.

Category

The category is a number that can be assigned to a collision body to specify collision possibilities with other collision
bodies. Collision bodies only collide within the same categories and with collision bodies in the category 0. Category
0 is an exception; bodies in the category 0 collide with all other collision bodies, regardless of the object’s category.
Categories can be used to simulate inductive sensors.

Collision material

The choice of collision material influences the physical coefficients dynamic friction, static friction, rolling friction,
and restitution. It is recommended to enter accurate friction values for all parts that will take part in collisions to reflect
reality.

In order to create a custom material in NX MCD: Go to the Physics Navigator, right click on Materials and select
Create Physics -> Collision Material.

Prevent collision

The prevent collision function allows two collision objects to not collide with one another if they come in contact.

Transport surface

Transport surfaces are used to simulate conveyor belts. Siemens NX MCD provides a function that can define any
surface in an assembly as a transport surface.

10.3. Mechatronics Concept Designer 105



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.5: Assigning a collision body

106 Chapter 10. Siemens NX MCD



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.6: Creating a collision material

Fig. 10.7: Assigning transport area properties to a surface

10.3. Mechatronics Concept Designer 107



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Collision Sensors

One of the sensor functions available in Siemens NX MCD is a function that turns objects into collision sensors. When
such an object collides with another object (the second object must have collision properties), a boolean signal is set to
true. Collision sensors are used to simulate different types of real life sensors (e.g., optical sensors, inductive sensors,
etc.). Collision sensors are usually helping elements and are not displayed (blinded out) during the final simulation.

Fig. 10.8: A collision sensor used to simulate the function of an inductive sensor in the assembly. The sensor detects
if a part is at the beginning of the conveyor belt.

Joints

Rigid bodies can be fixed, positioned in space or connected to each other by joints of different degrees of freedom.
These connections are independent of the assembly constraints from the design application. The joints are available in
different degrees of freedom: Hinge (swivel joint f=1), sliding joint (f=1), and cylindrical joint (combined sliding joint
and hinge (f=2)).

The following figure shows a sliding joint that is assigned to a rigid body. The rigid body has only one degree of
freedom and can be moved only along the axis specified for the sliding joint. Moreover, upper and lower limits are
defined along the specified axis which the body cannot exceed during motion.

The following figure shows a hinge joint assigned to a part within an assembly. For a hinge joint (and a sliding joint),
an attachment object and a base object should be provided. A base object can be ignored if the base of rotation (or
sliding) is not movable in the simulation. In case the base is movable, it must be specified.

Position Controls

The positions of the joints created earlier can be controlled with objects called Position Controls, which can be
found in the Electrical tab. The following figure shows the creation of a position control object to control a sliding
joint object.

Position controls can also be created to control the angle of a hinge joint. Position control objects have two important
variables: position and speed. Both variables can be manipulated during the simulation using operations and external
signals.

108 Chapter 10. Siemens NX MCD



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.9: Assigning a sliding joint to an object

10.3. Mechatronics Concept Designer 109



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.10: Assigning a hinge joint to an object within an assembly

110 Chapter 10. Siemens NX MCD



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.11: Creating a position control to control the position of an object along its sliding joint

10.3. Mechatronics Concept Designer 111



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Signals

Signals are objects that allow the communication to programs outside of the simulation. A signal in MCD can have the
type bool, int, or double. A signal can be an input signal or an output signal, allowing a two-way communication from
and out of MCD.

Note: When communicating with a PLC, an output signal from the PLC’s perspective (for example, an motor_on
signal) is an input signal from MCD’s perspective and should be defined in MCD as an input signal.

Signals can be linked to runtime parameters, in case of a collision sensor for example, where the collision sensor’s
value (true/false) is the runtime parameter. Signals can also trigger action in the simulation, e.g. setting a motor to
turn on. When interacting with a PLC, an MCD signal should be created for each PLC input and output variable. In
order to allow auto mapping procedures and prevent confusion, the names of the signals both in the PLC program and
in MCD should be identical.

The following figure shows an input signal (input into MCD, output from PLC) that is meant to control the cylinder’s
position.

Symbol Tables are tables that show related signals together. They are a way to not lose track of signals.

10.3.3 OPC UA and Signal Mapping

To establish a communication over OPC UA, click on External Signal Configuration from the Automation
tab. The following figure shows the configuration of an OPC-UA communication. Two boolean variables are selected
which are relevant to the given simulation.

Note: To be able to communicate to a simulated PLC over OPC UA, make sure that OPC UA is configured in the
PLC. (See section on TIA Portal basics)

Now that the external signals are imported, it is time to map them to the signals that were created inside MCD. The
following figure shows auto mapping of 3 inputs and 2 outputs (from MCD’s viewpoint).

10.3.4 Operations

Operations are one way to allow external or internal signals to manipulate the simulation in real time.

The following figure shows an operation that influences the value of the position variable of a position control object.
The shown operation extends a cylinder. The condition object is an MCD signal that is mapped to an external signal.
Thus, this cylinder can be controlled from outside the simulation while the simulation is running.

10.3.5 A Note on Assembly Hierarchy

The following figure shows a robotic arm in an assembly. The robotic arm itself (UR3_step) is an assembly that is
made of single parts. The robotic arm is part of a bigger assembly (called assembly1). In this example, assembly1
is the main assembly (the biggest assembly) and the robotic arm is a sub-assembly inside that main assembly.

Assemblies can thus include single parts or other sub-assemblies.

By double clicking on a part/assembly, MCD focuses on that selected part/assembly. Simulations only run with the
selected part/assembly. To run a simulation including all parts, the main assembly has to be selected. To run a simulation
for only one part/assembly, that part/assembly has to be selected.

112 Chapter 10. Siemens NX MCD



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.12: A boolean input signal

10.3. Mechatronics Concept Designer 113



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.13: External signal configuration

114 Chapter 10. Siemens NX MCD



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.14: Signal mapping

10.3. Mechatronics Concept Designer 115



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.15: An example of an operation to influence a position control during simulation in real time

116 Chapter 10. Siemens NX MCD



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 10.16: Assemble levels

10.3. Mechatronics Concept Designer 117



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

The location of a single part in the hierarchy can be changed through drag and drop between the assemblies.

The creation of physical properties (rigid bodies, collision bodies, joints, signals etc.) in Mechatronics Concept De-
signer can be done on any assembly level. Copying parts between files will retain the physical properties created on
the copied level and on all lower levels copied along, but not the properties that were created on higher levels.

When a model is copied, the physical properties of all lower levels are copied along.

• Assigning properties on the individual part’s level is handy if the part is going to be reused in many other assem-
blies. This way, the part can retain it’s physical properties. This saves the work of reassigning physical properties
to the part each time it is copied into a new assembly.

• Assigning the properties on a higher level in the assembly is handy if the part will be used in other assemblies
but its properties are not needed anymore. This saves the work of manually deleting all the assigned properties
when copying the part into a new assembly.

Because of a bug that causes a communication problem, it is recommended to assign physical properties to parts in a
sub-assembly level or on the main assembly level. It is advised to avoid running the simulation on a single part level.
Refer to the section on Troubleshooting for more details on communication bugs.

10.4 Summary

Siemens NX MCD offers a tool to create kinematic models using existing CAD models. These kinematic models can be
controlled by PLCs (simulated/real), which allows for early verification of control code and a cut in real commissioning
time.

118 Chapter 10. Siemens NX MCD



CHAPTER

ELEVEN

TIA PORTAL BASICS

In this module, the TIA Portal environment for PLC-programming is introduced.

11.1 Learning Outcome

• You will get familiar with the TIA Portal environment.

• You will be able to program Siemens PLCs using FBD, LAD, and SCL programming languages.

11.1.1 Introduction

TIA Portal is a Siemens software that provides a programming environment for PLCs. Different programming lan-
guages, like FBD, LAD, and SCL (a variant of ST), are supported in TIA Portal.

This module will go through the basics of starting a new project in TIA Portal.

11.1.2 Requirements

• PLC-Basics

11.1.3 What you need

Software

• TIA Portal V15 or newer

• PLCSIM Advanced V2.0 or newer

11.2 TIA Portal

TIA Portal is a Siemens software for programming PLCs. Also, PLCs can also be simulated using PLCSIM Advanced.

The TIA Portal environment includes a networks window. Networks act like code lines; code (each network) is run by
the CPU from up to down every PLC cycle (i.e., network 1, then network 2, and so on). Programming in networks is
useful for good code organization, especially if the programming language used is LAD or FBD.

119



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 11.1: Part of the TIA Portal environment - a new project

11.2.1 Programming Blocks

The design of PLC codes in TIA Portal is done with modular blocks. There are divided into 4 types according to their
use.

These are:

• Organizational block: These provide structure to program. They serve as a link between the user program
and the OS of PLC. Main [OB1] is a type of this block.

• Function block: This type of block is used to create code snippets which has its own data storage i.e., it
has its own variable memory where the values are stored after the code snippet finishes its intended task.

• Function code: This type of block is generally used to create a reusable code structure. This block does
not have a database linked to it i.e., it does not save values it calculates. Thus, a local stack of temporary
values is used and gets deleted once the code snippet is exited (after executing its intended task).

• Data block: This is used to store data received from the code snippets. The data block can be either global
DB or can be an instance DB.

11.2.2 Creating a new function block

A new project will only have a block called Main [OB1]. This is the project’s main function. All user created functions
and function blocks will be called inside the main function.

The block Main [OB1] in TIA Portal can be written using either LAD or FBD standard programming languages. In
the context of this module, LAD will be used.

Note: The programming language of Main [OB1] can be changed through right click on Main [OB1] -> Switch
programming language.

To create a block, click on Add new block under Program blocks.

120 Chapter 11. TIA Portal Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 11.2: Types of Programming blocks

Note: Blocks are useful for organizing and structuring a program.

The following figure shows a new function block that is named State_machine.

Variables can be declared and used inside the function block.

To run this FC, you will have to include it inside the Main [OB1] block.

To do so, drag and drop the function block into a Main [OB1] network to create instance of the function block.
Once you drag it on the rail of Main, a pop-up to create a DB would appear. Click OK to create the DB. This data
block stores all the instance variables related to that instance of the FC.

Note: All types of Functions have to be called in Main [OB1] to execute them. If they are not in Main [OB1],
they won’t run or do their task.

A data block is not created to save variables of function code / functions. No instances of function code
/ functions exist.

Function blocks, however, are initiated as instances. Variables that belong to a specific instance of a function
block are saved in a data block that specifically stores variables of that instance only. Creating another instance of
the same function block type will create another data block for the new instance. Hence DB instance for LED_1
will be different from LED_2 and will operate separately.

Note: Functions with inputs have to have inputs connected to them in Main [OB1]. If no inputs are connected to
the function, a compilation error will occur.

11.2. TIA Portal 121



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 11.3: Creating a new block

122 Chapter 11. TIA Portal Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 11.4: TIA Portal function block environment

11.2. TIA Portal 123



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 11.5: Example Function Block

Function blocks, on the other hand, do not require inputs to be connected to them in Main [OB1]. Each instance
of a function block has its own Data block, in which the inputs of that specific instance is saved.

11.2.3 Using Predefined Functions

TIA Portal provides various predefined functions ready for use. These can be found on the right side under Basic
instructions.

For example, if you need a Mathematics based function, expand Math functions and select the required function.

Note: User-defined functions and function blocks are used in the same way in LAD.

124 Chapter 11. TIA Portal Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 11.6: A function block instance in Main

Fig. 11.7: An example of a standard function.

11.2. TIA Portal 125



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

11.2.4 Watch and Force Tables

Watch and force tables are tables that are used to monitor variables in real-time while the PLC is running. Watch and
force tables can also be used to overwrite variables in real-time. Because they can change variables’ values, they are
useful for testing a program. In this module, watch tables will be used to monitor and set variables while the program
is running.

Deep Dive: Watch vs Force Tables

Force tables manipulate the peripherals. In this module, watch tables will be used to monitor and test the program.
Watch tables are recommended for testing the program. For big programs, every scenario of inputs and outputs could
be summed up in a watch table.

Fig. 11.8: The stage at which watch and force tables manipulate the signals

126 Chapter 11. TIA Portal Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Creating Watch Tables

To create a new watch table, select Add new watch table under Watch and force tables in the Project tree.

Add the variables you need in the rows.

Set the PLC in Online mode (using Online -> Go online) and in RUN mode (Online -> Start CPU)

Once done, select the Monitoring tool from the menu above. Now you can watch the changes in the variables and also
modify their values if required.

Hint: Watch tables are on PC hence you do not have to download the code again to the PLC.

Fig. 11.9: An example set-up of a watch table

Note: All the variables shown in this watch table are part of a created data block called IMS_4_DB, hence the
"IMS_4_DB". at the beginning of the variables’ names. The address column is empty because these variables in this
example were not mapped to a PLC I/O module, but are rather variables that belong to an instance of a user-defined
function block called IMS_4.

Fig. 11.10: An example watch table in action

Danger: Using a watch or a force table to manipulate variables influence the real system and overrides the program
on the PLC. Be sure that it is safe to do so when working with a real PLC as it may be connected to moving parts
or could unintentionally release liquids through valves.

11.2. TIA Portal 127



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

11.2.5 Timers

There are various types of timers available according to IEC standard. Here are the commonly used timers with their
timing diagram.

Fig. 11.11: Timers (ref: Siemens S7-1200 Programmable controller System Manual)

11.2.6 Monitoring runtime values

You can monitor runtime values using Monitor Tool. It looks like the image below. You will find it at various locations.

128 Chapter 11. TIA Portal Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 11.12: Monitor Tool

11.2. TIA Portal 129



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

130 Chapter 11. TIA Portal Basics



CHAPTER

TWELVE

TIA OPC-UA

12.1 Configuring OPC-UA server in TIA Portal

To activate an OPC UA server:

• Go to Device configuration from Project tree from left side.

• Set the view to Device view

• Click on the PLC image and open Properties

• Go to OPC UA -> Server -> General

• Under Accessibility of the server, check the option Activate OPC UA server to activate it.

• In case a security pop-up appears, accept it (click OK).

• Find Runtime licenses in the same window (Properties)

• Under Type of purchased license, select SIMATIC OPC UA S7. . .

• Go back to OPC UA -> Server -> General

• Copy the server address.

Note: Write down (and copy it) the complete server address of the PLC. Please DO NOT forget opc.tcp and port
number!

This information will be needed later when a client (for example UA Expert, Prosys OPC UA Browser or Siemens NX
MCD ) tries to communicate to the PLC over OPC UA.

Note: The OPC-UA server will not work if license is not set properly.

Warning: FOR THIS MODULE, PLEASE DO NOT CHANGE ANY MORE SETTINGS.

Danger: Be careful in setting security for the OPC-UA server when working on REAL PROJECTS.

Here, you are not working on hazardous equipment, hence No Security option under Properties -> OPC UA ->
Server -> Security is enabled. Learn more in user manual before changing these settings.

131



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 12.1: Activating OPC UA server

132 Chapter 12. TIA OPC-UA



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

12.2 Creating OPC-UA Server Interface

To add a server interface, perform the following steps:

1. Select the PLC name from the Project tree.

2. Expand the and select OPC UA communication

3. Select Server interfaces and expand it

4. Click on Add new server interface and rename the interface created

5. From the Add new server interface pop-up, select Server interface and click OK

6. Add the tags required to be monitored or to be modified using OPC Client. You will have to drag the tags
from OPC UA elements to server interface

7. Upload the changes to the PLC

Fig. 12.2: OPC-UA Server Interface

Note: Keep the PLC connected with LAN cable.

• When uploading any hardware changes, keep the PLC in STOP mode and in offline mode. i.e., Online -> Stop
CPU & Online -> Go offline

• When uploading only software changes, you can keep PLC in Online mode.

Danger: Be cautious in setting access of variable. You should not provide open access to all variables (tags).

Set the access in Default Tag Table

12.2. Creating OPC-UA Server Interface 133



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 12.3: Default Tag Table

134 Chapter 12. TIA OPC-UA



CHAPTER

THIRTEEN

PLCSIM ADVANCED

13.1 Setting up simulation support in TIA Portal

Before starting a PLC simulation, one should first make sure the TIA Portal program allows simulations. To do that,
right click on Project's name in the Project tree``and select ``Properties. In the Protection tab, a
tick has to be placed next to Support simulation during block compilation.

Fig. 13.1: Adding support for simulation in TIA Portal

Warning: PLCSIM does not offer simulated PLCs with communication features. If communication features, such
as OPC-UA are required, simulations must be carried out using PLCSIM Advanced.

13.2 Launching PLCSIM Advanced and creating a PLC instance

Now PLCSIM can be launched. For that, double click on the PLCSIM Advanced icon on the desktop or search for
PLCSIM Advanced in the search bar and click Enter.

Note: PLCSIM Advanced does not launch a window (in older PLCSIM Advanced versions). When it runs, it shows
up on the tray icon. A right click on the tray icon will show the control panel.

Note: The PLC name and IP address have to be identical to those in the TIA Portal program. Use a subnet mask of
255.255.255.0. Please note that the subnet mask depends on the network settings.

After Start is clicked, a virtual PLC instance should run.

135



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 13.2: Setting up a PLC instance

136 Chapter 13. PLCSIM Advanced



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 13.3: A running virtual PLC instance

13.2. Launching PLCSIM Advanced and creating a PLC instance 137



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

13.2.1 Deep Dive: PLCSIM vs PLCSIM Advanced

With TIA Portal, it is possible to simulate a Siemens PLC and test a program on the simulated PLC. With the software
PLCSIM, it is possible to create such a simulation (12xx and 15xx PLCs), however, the simulated PLC has no com-
munication capabilities. The software PLCSIM Advanced (a separate software than PLCSIM) can simulate Siemens
15xx PLCs with communication capabilities.

13.2.2 Summary

Simulating a PLC using PLCSIM Advanced allows for communication. The simulated PLC can communicate with
other devices (through OPC-UA for example), allowing for a more realistic validation of control code.

138 Chapter 13. PLCSIM Advanced



CHAPTER

FOURTEEN

KONZEPTION EINER FERTIGUNGSANLAGE FÜR SANDWICHES

Anhand des Beispiels der Sandwichproduktion werden in kurzer Form alle notwendigen Arbeitsschritte umgesetzt, um
ein Fertigungskonzept zu entwickeln. Bitte beachten Sie, dass dies nur eine kurze Übersicht darstellt und die einzelnen
Schritte in der Realität deutlich ausführlicher beleuchtet werden müssen.

14.1 Teil 1: Anforderungen

14.1.1 Grundinformationen und Anforderungen

Als Produkt wird ein handelsübliches Sandwich gewählt, welches abgepackt in Supermärkten gekauft werden kann.
Anhand der Variation der Beläge wird eine Variantenvielfalt erzeugt.

Das Sandwich soll im vorliegenden Fall mit 4 verschiedenen Zutaten in allen Kombinationen belegt werden können.
Dem Fertigungsprozess werden die Brotscheiben, die geschnittenen Tomaten, die Sauce, der Käse und der Schinken
zugeführt. Die Fertigungsanlage soll die Brotscheiben belegen, zuschneiden und am Ende verpacken. Die fertigen
Sandwiches sollen mittels einer visuellen Kontrolle überprüft werden.

Einen Beispielprozess zur Sandwichproduktion finden Sie hier:

https://youtu.be/YE0pjv-3Yzs

Todo: Nennen Sie die Arbeitsschritte, die für die Sandwichproduktion erforderlich sind

139

https://youtu.be/YE0pjv-3Yzs


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Hint: Ein grober Arbeitsablauf mit 5-10 Schritten ist ausreichend. Sie können eine andere Art der Visualisierung
nutzen und müssen nicht das vorgegebene Layout weiterführen.

14.1.2 Erstellen Sie eine grundlegende Anforderungsliste für die Produktion

Während der Planungsphase lassen sich Anpassungen bzw. Änderungen noch kostengünstig durchführen, Änderungen
nach Fertigstellung der Anlage werden teuer.

Todo: Nehmen Sie geeignete Daten für die Anforderungsliste an.

Flächen-/Raumbedarf
Einsatzdauer und Taktzeiten
Kostenrahmen
Flexibilität
Wunsch nach bestimmten Komponenten
Zeitpunkt der gewünschten Einsatzbereitschaft
Einbindung in vorhandene Anlagen/Systeme
Ziele der Anlage: Produktivität, Qualität
Funktionen/Aufgaben
Automatisierungsgrad

14.1.3 Voraussetzungen für eine erfolgreiche Automatisierung

Todo: Beantworten Sie die folgenden Fragen: a) Ist das Produkt automatisierungsgerecht? b) Ist der Herstel-
lungsprozess automatisierungsgerecht?

Beachten Sie nachfolgend auch den wirtschaftlichen Automatisierungsgrad. Anzustreben bzw. zu beachten ist also
Folgendes:

• nur das automatisieren, was sinnvoll ist, und nicht das, was technisch möglich ist (Nutzen/ Kosten),

• ein vernünftiges Verhältnis von menschlicher Arbeit und Maschinenarbeit,

• kleine, überschaubare Einheiten bilden,

• mit zunehmender Komplexität der technischen Strukturen wächst der Aufwand stärker als die Systemwirk-
samkeit.

140 Chapter 14. Konzeption einer Fertigungsanlage für Sandwiches



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

14.1.4 Gliederung des Gesamtsystems in Subsysteme

Die Gliederung eines Gesamtsystems in Teil-/Subsysteme führt zu einer besseren Übersicht über die Funktionen und
Zusammenhänge in der Anlage und damit zu besseren und schnelleren Lösungen.

Komponenten Beispiele
Materialflusssysteme schienengebundene Transportwagen, Palettenumlaufsysteme, Trans-

portbänder
Handhabungssysteme Einlegegeräte, Roboter
Rüst-und Spannsysteme automatische Spannvorrichtungen, Spannpaletten, Palettenwechsler
Fertigungssysteme CNC-Bearbeitungszentren, automatische Montagestationen, Reini-

gungsstationen
Werkzeugsysteme Werkzeugspeicher, Werkzeugwechsler, Einstellung und Codierung,

Werkzeugüberwachung, Werkzeugdatenbereitstellung
Steuer- und Regelungssysteme numerische/speicherprogammierbare Steuerungen, Regeleinrichtun-

gen, PCs
Informations- und Kommunikationssys-
teme

Rechner, Netzwerke, Bussysteme

Leitsysteme Leitrechner, Netzwerke, PPS-Programme
Systeme zur Maschinendaten- und Be-
triebsdatenerfassung (MDE, BDE)

Sensoren, Codiersysteme

Qualitätssicherungssysteme BDE, MDE plus entsprechende Programme
Versorgungs- und Entsorgungssysteme Spänebeseitigung, Abfallentsorgung, Recycling

Todo: Nutzen Sie die folgende Tabelle, um Ihr Gesamtsystem zu organisieren. Beispiele sind bereits in der Tabelle
gelistet, diese können Sie an Ihren Prozess anpassen.

14.1. Teil 1: Anforderungen 141



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Man brauch je-
manden, der
(Funktion). . .

Teilsystem Analoge Komponente eines flexiblen Ferti-
gungssystems

das Brot heranschafft. Zuführeinheit Versorgungs- und Entsorgungssysteme
das Brot transportiert. Transporteinheit
das „Sagen“ hat, also
einen Chef.

Prozessleitsystem oder Werker über
Panel

Leitsystem

das Weitergeben
von Information
ermöglicht.

Automatisierungseinrichtung mit
Bus-System sowie Sensoren und
Aktoren

Steuer- und Regelungssystem, Informations- und
Kommunikationssystem, Systeme zur Datenerfas-
sung

Etc.

14.1.5 Definition von Arbeitsstationen

Todo: Skizzieren Sie die Grobstruktur der Fertigungsanlage für Sandwiches. Beachten Sie hierbei, dass nicht für jede
Funktion eine Arbeitsstation bereitgestellt werden muss. Zudem sollen die Stationen gleichmäßig ausgelastet sein, um
Engpässe zu verhindern. Besonders teure Komponenten (z. B. Roboter) sollen gut ausgelastet sein.

Beispiel zum Vergleich: Grobstruktur einer Fertigungsanlage für Schlüssel

Hint: Eine Skizze inkl. Automatisierungseinrichtungen ist ausreichend.

142 Chapter 14. Konzeption einer Fertigungsanlage für Sandwiches



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

14.2 Teil 2: Steuerung für die Fertigungsanlage für Sandwichbrote

Die Sandwichscheiben sollen in einer Vorfertigung hergestellt werden. Hierbei werden folgende Schritte umgesetzt:

• Zuführung Zutaten (Mehl, Wasser, etc.)

• Mischen/ Kneten der Zutaten

• Portionieren

• Gären

• Backen

• Separieren

• Schneiden

14.2.1 Anforderungen an Steuerungssysteme

(siehe Vorlesung „Organisation von Steuerungskomponenten“)

Todo: Nennen Sie die Anforderungen an die Steuerungstechnik für den Fertigungsbereich „Mischen“.

Todo: Nennen Sie die Anforderungen an die Steuerungstechnik für den Fertigungsbereich „Backen“.

Todo: Nennen Sie die Anforderungen an die Steuerungstechnik für den Fertigungsbereich „Schneiden“.

14.2.2 Steuerungssysteme und -arten

Todo: Welches Steuerungsmittel (mechanisch, hydraulisch, pneumatisch, elektrisch) würden Sie für eine Pick-&-
Place Anwendung von Brotscheiben wählen?Begründen Sie Ihre Antwort.

Todo: Welches Steuerungsmittel (mechanisch, hydraulisch, pneumatisch, elektrisch) würden Sie für die Backofens-
teuerung wählen, wenn es eine hohe Variantenvielfalt an Brotsorten gibt? Begründen Sie Ihre Antwort.

14.3 Teil 3: Sensorik und Aktoren für die Fertigungsanlage für Sand-
wichbrote

14.3.1 Sensorik

(siehe Kapitel „Organisation von Steuerungskomponenten“)

14.2. Teil 2: Steuerung für die Fertigungsanlage für Sandwichbrote 143



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Todo: Wählen Sie einen geeigneten Sensor zum Wiegen der Grundzutaten Mehl und Wasser aus.

Todo: Füllen Sie die folgende Tabelle aus. Für die Begründungen sind 1-2 Sätze ausreichend.

Digital oder Analog (inkl. Begründung)
Funktionsprinzip (inkl. Begründung)
Sensorparameter: Nennen Sie drei Auswahlkriterien für den Anwendungsfall (siehe Folie „Sensoren – Zusam-
menfassung“)
Auswahl eines realen Sensors: Fügen Sie den Namen und die Internetseite ein
Eigenschaften des realen Sensors: Listen Sie die wichtigsten (5-10) Eigenschaften aus dem Datenblatt aus und
markieren Sie die zuvor genannten Auswahlkriterien
Einbau: Beschreiben Sie in 2-3 Sätzen einen möglichen Einbauort in die Produktionslinie

Todo: Wählen Sie einen geeigneten Sensor zum Zählen der fertiggebackenen Brote für eine automatisierte Ferti-
gungslinie aus.

Todo: Füllen Sie die folgende Tabelle aus. Für die Begründungen sind 1-2 Sätze ausreichend.

Digital oder Analog (inkl. Begründung)
Funktionsprinzip (inkl. Begründung)
Sensorparameter: Nennen Sie drei Auswahlkriterien für den Anwendungsfall (siehe Folie „Sensoren – Zusam-
menfassung“)
Auswahl eines realen Sensors: Fügen Sie den Namen und die Internetseite ein
Eigenschaften des realen Sensors: Listen Sie die wichtigsten (5-10) Eigenschaften aus dem Datenblatt aus und
markieren Sie die zuvor genannten Auswahlkriterien
Einbau: Beschreiben Sie in 2-3 Sätzen einen möglichen Einbauort in die Produktionslinie

Todo: Wählen Sie einen geeigneten Sensor zur Überwachung der Temperatur im Backautomaten aus.

Todo: Füllen Sie die folgende Tabelle aus. Für die Begründungen sind 1-2 Sätze ausreichend.

Digital oder Analog (inkl. Begründung)
Funktionsprinzip (inkl. Begründung)
Sensorparameter: Nennen Sie drei Auswahlkriterien für den Anwendungsfall (siehe Folie „Sensoren – Zusam-
menfassung“)
Auswahl eines realen Sensors: Fügen Sie den Namen und die Internetseite ein
Eigenschaften des realen Sensors: Listen Sie die wichtigsten (5-10) Eigenschaften aus dem Datenblatt aus und
markieren Sie die zuvor genannten Auswahlkriterien
Einbau: Beschreiben Sie in 2-3 Sätzen einen möglichen Einbauort in die Produktionslinie

144 Chapter 14. Konzeption einer Fertigungsanlage für Sandwiches



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

14.3.2 Aktorik zum Transport einzelner Brote vom Förderband auf eine Rutsche

Die fertigen Brote liegen nach dem Backvorgang auf einem Förderband und sollen vom Förderband aus auf ver-
schiedene Rutschen verteilt werden.

Todo: Nennen Sie drei Möglichkeiten zur Realisierung des Sortiervorgangs und beschreiben Sie die Möglichkeiten
in 2-3 Sätze.

Todo: Bewerten Sie die Möglichkeiten in Bezug auf Komplexität, erwartete Kosten und Flexibilität in Hinblick auf
unterschiedliche Brotdimensionen.

Todo: Wählen Sie eine Möglichkeit aus und nennen Sie die dafür benötigten Aktoren.

14.3. Teil 3: Sensorik und Aktoren für die Fertigungsanlage für Sandwichbrote 145



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

146 Chapter 14. Konzeption einer Fertigungsanlage für Sandwiches



CHAPTER

FIFTEEN

BASICS OF AUTOMATION TECHNOLOGY

1. Ordnen Sie die folgenden Begriffe dem Schaubild zu

a) Sondermaschinen

b) Bearbeitungszentren

c) CNC-Maschinen

d) Konventionelle Universalmaschinen

e) Transferstraßen

f) Flexible Fertigungssysteme

g) Flexible Fertigungszellen

147



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

148 Chapter 15. Basics of automation technology



CHAPTER

SIXTEEN

BASICS OF PNEUMATIC ELEMENTS

16.1 Circuit 1

Create a pneumtatic circuit in FluidSIM with the following properties:

• Cylinder 1 extends when button 1 is pressed

• When cylinder 1 is in the end position, cylinder 2 extends

• When cylinder 2 is in the end position, both cylinders retract again

Do only use valves to create the program logic.

16.2 Circuit 2

Create a circuit in FluidSIM with the following properties:

• Cylinder 1 extends when pushbutton 1 is pressed

• Cylinder 1 retracts when pushbutton 2 is pressed

• When cylinder 1 is in the end position, cylinder 2 extends

• As soon as cylinder 1 is no longer in the end position, cylinder 2 retracts again

• Cylinder 3 moves out when cylinder 1 and 2 are in the end position

• Cylinder 3 retracts when cylinders 1 and 2 are in the home position

Do only use valves to create the program logic.

149



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

150 Chapter 16. Basics of pneumatic elements



CHAPTER

SEVENTEEN

PNEUMATICS AND THE DIGITAL MODULE

17.1 Logic modules

Todo: Implement the contact logic shown with logic modules (inputs d, c, b, a / output y).

Hint: If you want to test your contact logic in FluidSim, you can use the setup shown in the following figure.

151



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

152 Chapter 17. Pneumatics and the Digital Module



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

17.2 Pneumatic feed drive with digital module

A feed drive with pneumatic components is to be implemented that operates under certain conditions.

• The feed drive is implemented by a cylinder that returns to its home position when depressurized

• The piston speed is influenced by means of a control element

• The piston may only extend if the following conditions are met:

– A two-hand control must be ensured (Two pushbuttons must be permanently actuated during the feed
movement. This ensures that the operator’s hands are out of the danger zone).

– The piston is not in its end position.

• As soon as the end position is reached, the piston automatically retracts completely (even if both buttons are still
pressed).

Todo: Create a circuit in FluidSIM with the specified properties and realize the program logic by means of a digital
module.

Todo: Create the whole logic in the digital module; do not add logic outside (e.g. by using normally closed contacts
or parallel paths )

17.3 Industrial roller shutter door

Description:

• The rolling gate is opened and closed by the gatekeeper using an “up” and “down” button.

• The movement can be interrupted at any time using a STOP button.

• Two motors are used: One motor for the movement upwards, one motor for the movement downwards.

• When the gate is fully open or closed, the motor is switched off.

• An indicator light shows the operation of the door 5 seconds before the movement and during the movement.

• A safety pressure bar ensures that the gate stops on contact, immediately moves up and stops at the top.

Todo: Create a principle sketch of the rolling gate

Todo: Create the circuit diagram with logic gates in the digital module and with the hardware components (motors,
pushbuttons, etc.)

17.2. Pneumatic feed drive with digital module 153



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

154 Chapter 17. Pneumatics and the Digital Module



CHAPTER

EIGHTEEN

RELAY TECHNOLOGY

18.1 Traffic light using step chains

Description:

• The process starts when a button is pushed

• Red phase 5 seconds

• Yellow phase 3 seconds

• Green phase 10 seconds

Todo: Create a state diagram for a German traffic light system.

Todo: Since this is a step chain, relay technology can be used for the implementation. To do this, create the required
circuit diagram in FluidSIM.

Hint: Take the sequential circuit from the lecture as a starting point.

155



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

156 Chapter 18. Relay Technology



CHAPTER

NINETEEN

PLC - GENERAL KNOWLEDGE

19.1 IEC 61131 - Comprehension questions

• What is the cycle time of a task?

• What is the difference between an FB and FC?

• What is meant by multitasking?

• What standard functions (FCs) and standard function blocks (FBs) are there according to IEC? Name four ex-
amples.

• Can a function have several outputs?

• Is it possible to address directly represented variables in a function block, e.g. the input %IX6.0? What problem
does this cause?

• What types of variables are there in IEC? What is the difference between global, local and direct variables?

• What data types are there in the IEC?

• How is the communication within a program?

• How is the communication between different programs?

• Which programming languages are there according to IEC 61131?

• Create an example in ST for each of the following statements: IF, CASE, FOR, and EXIT.

157



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

158 Chapter 19. PLC - General knowledge



CHAPTER

TWENTY

PLC - PRACTICAL EXERCISES

20.1 Industrial roller door

Description:

• Assumption: At system start the rolling gate is closed.

• The rolling gate is operated by the gatekeeper by means of a pushbutton. If the button is pressed in the closed
state, the gate opens until a limit switch is reached. If the button is pressed in the open state, the gate closes after
a waiting time of 5s until a limit switch is reached. If the button is pressed while moving or during the waiting
time, the gate stops. If the button is pressed again, the gate moves in the opposite direction than before the stop.

• Two motors are used (open & close). It must be ensured that only one motor is controlled at a time. When the
rolling gate is fully open or closed, the motors are switched off.

• In addition, there is an emergency stop switch and an acknowledgement button. If the emergency stop button is
pressed, the door stops. To restart the rolling door after an emergency stop, the acknowledgement button must
be pressed.

• A safety pressure bar ensures that the gate stops on contact, immediately moves up and remains up.

• Maintenance is required after N upward movements of the rolling gate (upward movements are counted when the
upper limit switch is reached). N is a static variable and is set to the value N=5 for test purposes. The execution
of the maintenance is confirmed by means of the acknowledgement button.

• A signal column (red, green, yellow, blue, orange) indicates the status of the gate. Red: gate closed; Green: gate
open; Orange: gate waiting; Yellow: gate in motion; Blue: maintenance required

Todo: Create a principle sketch according to the description.

Hint: Integrate the conditions of each state (entry, do, exit). Define the transitions between the states Follow the hints
in the Ilias Wiki “Basics” “Statechart”. Use “speaking names” to designate the variables and the states to make the
program more understandable.

Todo: Create a state machine according to the description.

Todo: Implement the state machine in ST. Use the same variable names as in the state diagram. Use an enumeration
for the logic of the program; the enumeration contains the names of the previously defined states.

159



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Hint: Use standard visualization components to simulate the following components: Pushbutton; Signal tower (four
LEDs); Motors (one LED each); Counter value of maintenance (text field).

Hint: Use a counter function block for the generation of maintenance intervals. In the visualization, show how many
passes are missing until maintenance is done.

160 Chapter 20. PLC - Practical exercises



CHAPTER

TWENTYONE

TIA SETUP

The setup of Siemens PLC is done with the help of TIA Portal application

Fig. 21.1: Siemens PLC S1200

161



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

TIA Portal is a Siemens software for programming PLCs.

21.1 Creating a new project

To create a new project inside TIA Portal V16, click on Create new Project from the start menu and provide name,
path in which the project will be saved, and an optional comment.

Fig. 21.2: TIA Portal Startup interface.

Following this, guided project creation steps will show up on the screen.

21.2 Adding a PLC to a project

To add a PLC to the current project, first find the model of the PLC. Click on Configure networks under Devices
& networks from the menu.

Once done, follow the steps below to add it (images added for reference):

1. Click on Configure networks

2. Go to Online -> Accessible devices.... A pop-up window will open.

3. Select PN/IE inside Type of the PG/PC interface:. Check for the PG/PC interface and set it to LAN con-
nection from drop down list. For example, Intel(R) PRO/1000

4. Click on Start search to find connected devices to computer’s LAN. Once scan is complete, you will
see a device in the list with properties like Address, MAC Address etc. Read the IP Address on your PLC
and find it in the list. It should be like 192.168.##.##.

162 Chapter 21. TIA Setup



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 21.3: PLC Setup in Project part 1

21.2. Adding a PLC to a project 163



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

5. To confirm it’s your device, click on the device and press Flash LED. You will then see the Power LED on
PLC starts to blink. This confirms that you have selected your own PLC. Next click on Show.

Fig. 21.4: PLC Setup in Project part 1

6. The pop-up window closes and on the left side, a tree list (project tree) structure expands. Here you will
find the PLC you selected.

7. Expand the tree of the PLC and double click on Online & diagnostics. A new window opens with
details about the PLC.

8. Check for the Firmware version and note it down.

9. Click on Portal view and return to the Add new device panel.

10. Click on Add new device

11. Select the correct PLC from the list and use the correct firmware version.

12. Once done, click Add and the selected PLC will be added to your project.

164 Chapter 21. TIA Setup



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 21.5: PLC Setup in Project part 2

21.2. Adding a PLC to a project 165



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

21.3 Adding a signal board to PLC

1. A new window will open with image of the selected PLC. Go to Device view if not already there.

2. Click on the center of the PLC to add signal board.

3. From the catalogue on the right side, select the correct signal board and drag it on the top of the center of the
PLC. You will mostly find the right board in Signal boards -> DI/DQ.

4. Now your PLC is ready to be programmed.

Fig. 21.6: Adding signal board to PLC

If the version is not visible, use the following configuration provided with the PLC.

Once everything is set, the PLC should look like this.

21.4 Changing IP address for Project

To change the IP-Address of the project, follow the steps below:

1. Right click on the PLC from the left side project tree.

2. Click on Properties. A pop-up window will open.

3. In that window, find PROFINET interface -> Ethernet addressess -> IP protocol

4. Here, enter the IP address: provided with the PLC. Click OK once done.

166 Chapter 21. TIA Setup



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 21.7: PLC after setup in TIA Portal

21.4. Changing IP address for Project 167



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 21.8: Change IP of project part 1

168 Chapter 21. TIA Setup



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 21.9: Change IP of project part 2

21.4. Changing IP address for Project 169



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

21.5 Uploading code to PLC

Initially you will have to add the plc on your network, to your code. To do that and to upload the code for the
1st time, follow the steps below (images added for reference):

1. To upload code to PLC, select the PLC from the left project tree structure.

2. Select Online -> Download to device option from the menu. A pop-up window will open.

3. Check for the PG/PC interface and set it to LAN connection from drop down list. For example, Intel(R)
82578DM

4. Click on Start search to find connected devices to computer’s LAN.

5. Once scan is complete, you will see a device in the list with properties like device name, IP Address etc.
To confirm it’s your device, click on the device and press Flash LED. You will then see the Power LED on
PLC starts to blink. This confirms that you have selected your own PLC.

6. Click on Load button. This will compile your code and show the possible errors and warnings. Once the
code is checked, this will upload the code to the PLC. After that, click on Finish to close the pop-up
window.

Fig. 21.10: Uploading code to PLC for 1st time

Note: Keep the PLC connected with LAN cable.

• When uploading any hardware changes, keep the PLC in STOP mode and in offline mode. i.e., Online -> Stop
CPU & Online -> Go offline

170 Chapter 21. TIA Setup



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

• When uploading only software changes, you can keep PLC in Online mode.

Note: When uploading to a Virtual PLC, switch to Siemens PLCSIM Virtual Ethernet Adapter in #Step 3.
Rest of the steps remain same.

After uploading for the 1st time, you can now upload only software changes until you don’t have any new hardware
configuration or hardware property changes.

To do so, right click on the main code block and click on Download to device -> Software (only changes)

If you have hardware changes or property changes, right click on PLC name from the left project tree. Click on
Download to device -> Hardware and software (only changes). You might have to Go offline and then
Online to see the changes.

21.6 Creating PLC tags for Pins

PLC tags are the PLC variables. These particular variables are mapped to the PLC I/O modules. Tag tables are used
to view the PLC tags. One can add new tag tables to sum up variables that are related together. When a variable needs
to be connected to a physical signal that is outside the PLC (e.g., a sensor reading coming in), it is defined in a PLC
tag table.

To define project tags,

1. Go to the left side project tree. Expand the PLC and expand PLC tags.

2. Under this, click on Add new tag table. Rename the new table with a proper name for example,
out_pins.

3. Double click on the table name, a new pop-up window should open. Here you define variable names for
the pins you wish to use in your programs. A sample list is shown below.

Fig. 21.11: Defining PLC Tag

21.6. Creating PLC tags for Pins 171



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Note: This section supports features like drag to add sequential list like MS Excel.

You can also import & export this tag table from & to MS Excel or other spreadsheet application.

Note:

You will see the following in Address column

• I -> Input pin

• Q -> Output pin

• M -> Memory location

When you add variables for input/output pins of PLC, they also replace on PLC in Device View.

Fig. 21.12: Device view after variables to Tag Table

172 Chapter 21. TIA Setup



CHAPTER

TWENTYTWO

UML BASICS

22.1 UML Notation Elements

The following chapter contains excerpts from the book “UML 2 kompakt” by Heide Balzert. For a complete view of
the UML notation you must refer to the book.

22.1.1 Object

In the object-oriented software development an object possesses a certain condition and reacts with a defiierten behavior
to its environment. In addition, each object has an identity that distinguishes it from all other objects.

The state of an object includes the attributes or their current values and the respective object relationships to other
objects. Attributes are inherent, unchanging characteristics of the object, while attribute values may be subject to
change.

The behavior of an object is described by a set of operations. A change or a query of the state is only possible by means
of the operations.

The object is represented in UML as a rectangle, which can be divided into two fields. In the upper field the object is
designated as follows:

:Class
if the object is anonymous, only the class name is specified.

object:Class
if the object is to be addressed by a name.

object
if the object name is sufficient to identify the object and the name of the class is evident from the context.

The name of the object is always underlined. Object names start with a lowercase letter in UML, class names with an
uppercase letter. Anonymous objects are used if it is any object of the class. Object names are used to name a specific
object of the class for the system analyst.

In the lower field - optionally - the relevant attributes of the object in the respective context are entered. The UML
allows the following alternatives:

attribute
[type = value] .

attribute = value
recommended, since the value can often be used to identify what type it is.

attribute
useful if the value of the attribute is not of interest.

173



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

22.1.2 Class

A class defines for a collection of objects their structure (attributes), behavior (operations) and relationships (associa-
tions and generalization structures).

The class name is a noun in the singular. Thus, it describes a single object of the class. Examples: Employee, Car,
Customer.

22.2 Use Case Diagram

A use case describes the functionality of the software system that an actor must perform to obtain a desired result or to
achieve a goal. Use cases should allow to talk to the future user about the functionality of the software system without
getting lost in details right away.

An actor is a role played by a user of the software system. Actors can be humans or other automated systems. They
are always external to the system.

A use case diagram gives a good overview of the software system and its interfaces to the environment at a high level
of abstraction. The actors are often entered as stick figures, but can also be represented by a rectangle or pictogram
(e.g., as a computer symbol).

A line between actor and use case means that communication is taking place. The system under consideration is
modeled as a large rectangle that includes all use cases.

With the help of the extend relationship, a use case A is extended by a use case B. The use case A describes the basic
functionality, the use case B specifies extensions. Use case A can be executed alone or together with the extensions. For
an extension to be inserted, a condition must be met. This condition can be specified as a note or comment if required
and appended to the extend relationship.

The include relationship allows the common functionality of use-cases A and B to be described by a use-case C.
The use case C is not optional, but is always required for the correct execution of A and B. The include relationship
eliminates the need to describe the same behavior multiple times. In contrast to the extend relationship, the execution
of use case C is not dependent on any condition.

Use case diagrams are created per use case. A visual connection of multiple use cases is not typical, here individual
diagrams are used.

To represent boundaries, e.g. of devices, packages can be used.

Hint: Use case diagrams can be created online: https://app.diagrams.net/

174 Chapter 22. UML Basics

https://app.diagrams.net/


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

22.2. Use Case Diagram 175



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

22.3 Sequence Diagram

A sequence diagram shows the interaction between several communication partners. Each communication partner
is represented by a rectangle (header) with a line (lifeline), which can be dashed and represents the lifetime of the
communication partner.

The interaction between communication partners can be done by a synchronous or an asynchronous message. In the
synchronous message, the sender waits until the receiver has completed the requested processing. The receiver sends
a response message to the sender, which implicitly communicates the end of the requested processing and may also
contain response data.

In the asynchronous message, the sender does not wait for the receiver to complete the processing, but continues its
own processing in parallel.

Synchronous messages are indicated by an arrow with a filled arrow spit, and asynchronous messages are indicated by
an arrow with an open arrow spit. The reply of a synchronous message is a dashed arrow. The amount of time it takes
for a communication partner to perform the requested processing can be modeled by a bar on the dashed line.

Hint: Sequence diagrams can be created online: https://sequencediagram.org/

176 Chapter 22. UML Basics

https://sequencediagram.org/


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

22.3. Sequence Diagram 177



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

178 Chapter 22. UML Basics



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

22.4 State Machine Diagram

22.4.1 Procedure & Checklist

Brainstorming

Create a table with the following columns:

• 1st column: All states,

• 2nd column: All events that can occur internally or externally,

• 3rd column: All processing steps that must be listed.

Which states does the automat receive?

• The starting point is the initial state.

• By which events is a state left?

• Which subsequent states occur?

• By what is the state defined (attribute values, object relations)?

Does the state machine need a final state?

• If the final state is reached, the processing of the state machine ends.

• If the state machine describes a life cycle, the termination of the state machine can be equated with the end of
life of the object.

• No processing may be performed in a final state; it may not have any output arrows.

Which activities are to be modeled?

• Is there any processing associated with a state diagram?

• Do all incoming transitions of a state have the same activity? –> entry activity

• Do all outgoing transitions of a state possess the same activity? –> exit activity

• Is the processing linked to the duration of the state? –> do-activity

Which events are to be modeled?

• External events from the user or from other objects;

• Temporal events (duration, time);

• Internally generated events of the class or use case.

Analytical steps - Appropriate state name.

• Describes a specific time period.

• Does not contain a verb.

Analytical steps - Are all transitions correctly entered?

• Is every state reachable?

• Can each state - except the final state - be exited?

• Are the events of the transition unique?

• Can events occur that are not covered by the specified events?

Source: “UML 2 compact with checklists”, Heide Balzert

22.4. State Machine Diagram 179



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

22.4.2 Further

Hint: State diagrams can be created online on draw.io (https://app.diagrams.net/).

Note: In the literature there are different uses of the “entry”, “do” and “exit” conditions. We use the following notatin:

• Entry activity: action which is triggered when entering the state, e.g. light = False

• Do activity: action which is executed as long as you are in this state, e.g. count sheep

• Exit activity: action which is executed when one leaves the state, e.g. sleep = True

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-state-machine-diagram/

https://youtu.be/hbJ48fbJbrQ

22.4.3 Examples for state diagrams

Example for the circuit of a person traffic light

180 Chapter 22. UML Basics

https://app.diagrams.net/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-state-machine-diagram/
https://youtu.be/hbJ48fbJbrQ


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

22.5 Class Diagram

The class diagram represents the classes with attributes and operations, generalization and associations between classes.

Hint: Class diagrams can be created online: https://app.diagrams.net/

22.5. Class Diagram 181

https://app.diagrams.net/


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

182 Chapter 22. UML Basics



CHAPTER

TWENTYTHREE

OPC-UA CLIENT

23.1 UA Expert

There are a lot of different OPC tools available. In this project the free to use tool UA Expert from Unified Automation
GmbH is selected.

Hint: UA-Expert creates SSL certificates on the first startup. The information UA-Expert needs to know are relevant
to fulfill the SSL-specifications and they are used to identify the owner of the certificate. These informations are - in
our case - not important. You can add anything to the required fields.

Warning: UA-Expert requires the IP-address and port of the opc-ua server.

Start the tool and press the + Button to add a new connection. Use the “Double click to Add a Server. . . ”.

Fill in the field with the link to the OPC-UA Server (i.e. the IP Address of the PLC). Next, browse to the tree behind
the IP-address down and accept the dialog. Open the connection with the connect button.

Hint: A PLC might need to be in running mode for the OPC-UA server to be enabled.

Now you can browse through your OPC-UA Objects and search for the variables your OPC-UA server exposes. It is
possible to subscribe to data changes of variables by dragging them into the center window.

183

https://www.unified-automation.com/
https://www.unified-automation.com/


Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

Fig. 23.1: Add a new connection and a new server

Fig. 23.2: OPC-UA connection setup

Fig. 23.3: Connection to server

184 Chapter 23. OPC-UA client



Automatisierungstechnik für Mechatroniker (8610718), Copyright 2023, Prof. Jörg Wollert (FH
Aachen)

23.2 Prosys OPC-UA Browser

There are a lot of different OPC tools available. In this project the free to use tool Prosys OPC UA Browser from Prosys
OPC Ltd is selected.

Warning: Prosys OPC-UA Browser requires the IP-address and port of the opc-ua server.

Start the tool and select the field Enter connection address. Fill in the address and port to the OPC-UA Server
(i.e. the IP Address of the PLC and the default Port 4840). Next, click on the arrow and open the connection to the
OPC-UA server.

Hint: A PLC might need to be in running mode for the OPC-UA server to be enabled.

Now you can browse through your OPC-UA Objects and search for the variables your OPC-UA server exposes. It is
also possible to subscribe to data changes of variables.

23.2. Prosys OPC-UA Browser 185

https://downloads.prosysopc.com/opc-ua-browser-downloads.php
https://www.prosysopc.com/products/opc-ua-browser/
https://www.prosysopc.com/products/opc-ua-browser/

	Pneumatics & Logic using Fluid Sim
	Learning Outcome
	Introduction
	Requirements
	What you need
	Hardware
	Software


	Preparation: Festo Programming Stations
	Conveyor belt
	Stack magazine
	Handling station

	Preparation: Basic Electronic Parts
	Preparation: Basic Pneumatic Elements
	Task: Relais-based control
	Conveyor belt
	Stack magazine

	Preparation: Logic Elements
	Logic circuits
	Flip-Flops
	Bringing all together

	Task: Logic-based control
	Conveyor belt
	Stack magazine

	Problem Solving

	PLC Control of the Festo Stations
	Learning Outcome
	Introduction
	What you need
	Software
	Hardware


	Preparation: Conveyor Belt
	Goal

	Assignment: Conveyor Belt
	Signal Mapping
	State Machine as Enumeration
	PLC_PRG and the Switch Case Statement
	Visualization in e!Cockpit
	Changing colors
	Showing current state
	Moving an object
	Final task


	Preparation: Handling Station
	Goal

	Assignment: Handling Station
	Signal Mapping
	State Machine as Enumeration
	PLC_PRG and the Switch Case Statement
	Visualization in e!Cockpit
	Changing colors
	Showing current state
	Moving an object
	Final task



	Siemens PLC Control of Conveyor Band
	Learning Outcome
	Introduction
	Requirements
	What you need
	Software


	Conveyor System
	Preparation
	Task Description
	Preparation before the session

	Task
	Tia Portal Project Setup
	Function Block
	Main [OB1]


	Siemens NX MCD: Simple Robotic Arm Modelling
	What you need
	Software
	Files

	Preparation
	Assignment
	Box and Conveyor Band
	Simple Robotic Arm
	Collision Sensor
	Conditions - Using Operations as if-Statements


	OPC UA: Simple Robotic Arm Modelling
	What you need
	Software
	Files

	Preparation
	Assignment
	Simple Robotic Arm
	Conditions - Using Operations as if-Statements
	TIA Portal
	PLCSIM Advanced

	Establishing OPC-UA Communication

	Introduction to Pneumatics
	Actuators
	Directional Valves
	Throttle Valves

	Festo FluidSIM
	Creating a new project
	Building circuits
	Starting/Stopping the simulation

	PLC-Basics
	Information processing
	PLC Programming (IEC 61131)
	Controller configuration and resources
	Tasks
	Program Organization Units (POUs)
	Variables

	Programming languages (IEC 61131)
	Structured Control Language (SCL)
	Ladder Diagram (LAD)
	Function Block Diagram (FBD)
	Additional languages
	Examples
	SCL


	Sources

	Overview on hands-on videos for e!Cockpit
	Creating a connection to the PLC
	Real PLC available
	Usage of a virtual PLC

	Adding hardware modules
	Program Download and Boot Application
	Variables
	Local variables
	Global variables
	Retain and persistent variables

	Programs, functions and function blocks
	Own datatype structures
	Visualization

	Siemens NX MCD
	Learning Outcome
	Virtual Commissioning
	Mechatronics Concept Designer
	Siemens NX General Actions
	Modelling with MCD
	Rigid Bodies
	Collision Bodies
	Collision Sensors
	Joints
	Position Controls
	Signals

	OPC UA and Signal Mapping
	Operations
	A Note on Assembly Hierarchy

	Summary

	TIA Portal Basics
	Learning Outcome
	Introduction
	Requirements
	What you need
	Software


	TIA Portal
	Programming Blocks
	Creating a new function block
	Using Predefined Functions
	Watch and Force Tables
	Deep Dive: Watch vs Force Tables
	Creating Watch Tables

	Timers
	Monitoring runtime values


	TIA OPC-UA
	Configuring OPC-UA server in TIA Portal
	Creating OPC-UA Server Interface

	PLCSIM Advanced
	Setting up simulation support in TIA Portal
	Launching PLCSIM Advanced and creating a PLC instance
	Deep Dive: PLCSIM vs PLCSIM Advanced
	Summary


	Konzeption einer Fertigungsanlage für Sandwiches
	Teil 1: Anforderungen
	Grundinformationen und Anforderungen
	Erstellen Sie eine grundlegende Anforderungsliste für die Produktion
	Voraussetzungen für eine erfolgreiche Automatisierung
	Gliederung des Gesamtsystems in Subsysteme
	Definition von Arbeitsstationen

	Teil 2: Steuerung für die Fertigungsanlage für Sandwichbrote
	Anforderungen an Steuerungssysteme
	Steuerungssysteme und -arten

	Teil 3: Sensorik und Aktoren für die Fertigungsanlage für Sandwichbrote
	Sensorik
	Aktorik zum Transport einzelner Brote vom Förderband auf eine Rutsche


	Basics of automation technology
	Basics of pneumatic elements
	Circuit 1
	Circuit 2

	Pneumatics and the Digital Module
	Logic modules
	Pneumatic feed drive with digital module
	Industrial roller shutter door

	Relay Technology
	Traffic light using step chains

	PLC - General knowledge
	IEC 61131 - Comprehension questions

	PLC - Practical exercises
	Industrial roller door

	TIA Setup
	Creating a new project
	Adding a PLC to a project
	Adding a signal board to PLC
	Changing IP address for Project
	Uploading code to PLC
	Creating PLC tags for Pins

	UML Basics
	UML Notation Elements
	Object
	Class

	Use Case Diagram
	Sequence Diagram
	State Machine Diagram
	Procedure & Checklist
	Further
	Examples for state diagrams

	Class Diagram

	OPC-UA client
	UA Expert
	Prosys OPC-UA Browser


